Если мы увеличим толщину стекла настолько, чтобы стрелка часов сделала добавочный полный оборот за время полета с отражением от задней поверхности, то наши две стрелки будут опять указывать в противоположных направлениях и результирующая стрелка будет равна нулю (см. рис. 15). Это положение возникает снова и снова каждый раз, когда толщина стекла достаточна, чтобы стрелка часов сделала еще один полный оборот за время полета с отражением от задней поверхности.
Если толщина стекла такова, что стрелка часов делает добавочные 1/4 или 3/4 оборота, то две маленькие стрелочки будут направлены под прямым углом. В этом случае результирующая стрелка представляет собой гипотенузу прямоугольного треугольника, и, по теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. Так мы получаем величину, правильную «дважды в сутки»; 4 % + 4 % дают 8 % (см. рис. 16).
Рис. 14. Когда толщина стекла такова, что стрелка часов делает добавочный полуоборот для фотона, отразившегося от задней поверхности, стрелки переднего и заднего отражения указывают в одном направлении. Это дает результирующую стрелку длиной 0,4, что соответствует вероятности 16 %.
Рис. 15. Когда толщина стекла такова, что стрелка часов делает один или больше полных добавочных оборотов для фотона, отразившегося от задней поверхности, результирующая стрелка опять равна нулю, и отражения вообще нет.
Рис. 16. Когда стрелки переднего и заднего отражения составляют прямой угол, результирующая стрелка представляет собой гипотенузу прямоугольного треугольника. Таким образом, ее квадрат равен сумме двух других квадратов – 8 %.
Заметьте, что по мере того как мы постепенно увеличиваем толщину стекла, стрелка переднего отражения всегда указывает в одном направлении, тогда как стрелка заднего отражения постепенно меняет направление. Изменение относительного направления двух стрелок приводит к тому, что длина результирующей стрелки периодически меняется от нуля до 0,4. Таким образом, квадрат длины результирующей стрелки периодически меняется от нуля до 16 %, что мы и наблюдаем в наших экспериментах (см. рис. 17).
Рис. 17. Когда тонкое стекло заменяют более толстым, стрелка часов, отмеряющая время движения фотона, отраженного от задней поверхности, поворачивается чуть больше и относи-тельный угол между стрелками переднего и заднего отражения меняется. Это приводит к тому, что результирующая стрелка снова и снова изменяет длину, а ее квадрат колеблется от 0 до 16 % и опять до 0.
Только что я показал вам, как можно точно описать это странное частичное отражение, рисуя на бумаге какие-то нелепые стрелки. Специальное научное название этих стрелок – «амплитуда вероятности», и я чувствую себя более значительным, когда говорю: «Мы вычисляем амплитуду вероятности события». Однако я предпочитаю говорить просто, что мы пытаемся найти стрелку, квадрат длины которой является вероятностью того, что что-нибудь случится.
Прежде чем закончить эту первую лекцию, я хотел бы рассказать вам о радужных разводах, которые вы видите на мыльных пузырях. Или лучше о другом. Если масло из вашего автомобиля сочится в лужу, то, глядя на коричневое масло в грязной луже, вы увидите прекрасные переливы цветов. Тонкая пленка масла, плавающая на поверхности лужи, представляет собой что-то вроде очень тонкого стекла – она отражает свет одного цвета то слабо, то сильно в зависимости от своей толщины. Если мы будем светить чистым красным светом на масляную пленку, то увидим пятна красного цвета, разделенные узкими черными полосками (в тех местах, где нет отражения), так как толщина масляной пленки не везде одинакова. Если мы будем светить чистым синим светом, то увидим пятна синего цвета, разделенные узкими черными полосками. Если мы будем светить одновременно красным и синим светом, мы увидим, что некоторые места имеют как раз такую толщину, что отражают только красный свет; другие имеют как раз такую толщину, что отражают только синий свет; еще какие-то места имеют такую толщину, что отражают и красный, и синий свет (наши глаза видят при этом фиолетовый), и, наконец, где-то толщина пленки такова, что вообще ничего не отражается, и пленка кажется черной.
Рис. 18. По мере утолщения пластинки вероятность частичного отражения монохроматического света от двух поверхностей изменяется циклически от 0 до 16 %. Так как скорость воображаемой часовой стрелки различна для света различных цветов, цикл повторяется с различной частотой. Пусть на пластинку падают два чистых цвета – красный и синий свет. Тогда в зависимости от толщины пластинки будет отражаться или только красный, или только синий, или красный и синий свет вместе в различных соотношениях (что дает разные оттенки фиолетового), или ничего не будет отражаться (черный). Если, как у масла, растекающегося по луже, толщина слоя меняется, возникнут все комбинации. При освещении солнечным светом, состоящим из всех цветов, возникают всевозможные комбинации, что дает множество цветов.
Чтобы лучше это понять, следует знать, что цикл от нуля до 16 % для частичного отражения от двух поверхностей повторяется чаще для синего света, чем для красного. Так что при определенной толщине тот или иной цвет или оба цвета отражаются сильно, в то время как при другой толщине отражение обоих цветов отсутствует (см. рис. 18). Циклы отражения повторяются с разной частотой, что соответствует тому, что стрелка часов вращается быстрее для синего фотона и медленнее для красного. На самом деле единственное различие между красным и синим фотоном (или фотоном любого другого цвета, включая радиоволны, рентгеновское излучение и т. д.) – это скорость вращения стрелки часов.
Когда мы светим красным и синим светом на масляную пленку, появляются разводы красного, синего и фиолетового цветов, разделенные черными границами. Когда солнечный свет, состоящий из красного, желтого, зеленого и синего, падает на лужу с масляной пленкой, участки, сильно отражающие каждый из этих цветов, перекрываются и дают всевозможные сочетания, которые наши глаза видят как разные цвета. Когда масляная пленка расползается и движется по поверхности воды, разноцветные разводы постоянно меняются. (С другой стороны, если бы вы посмотрели на эту же лужу ночью, при свете натриевого уличного фонаря, вы бы увидели только желтоватые полосы, разделенные черным – потому что такие фонари испускают свет только одного цвета.)
Это появление разных цветов, вызываемое частичным отражением белого света от двух поверхностей, называется иризацией или радужностью и наблюдается во многих местах. Возможно, вы удивлялись, как получается переливчатая раскраска колибри и павлинов. Теперь вы знаете. Как возникли переливчатые цвета – это тоже интересный вопрос. Любуясь павлином, мы должны отдать должное поколениям тусклых самок за то, что они были так разборчивы в выборе себе пары. (Человек вышел на сцену позже и рационализировал селекцию павлинов.)
В следующей лекции я покажу вам, как при помощи этого забавного комбинирования стрелочек правильно рассчитать другие знакомые вам явления: что свет распространяется по прямой, что он отражается от зеркала под таким же углом, что и падает на него («угол падения равен углу отражения»), что линза фокусирует свет и т. д. Эта новая концепция опишет все, что вы знаете о свете.
Лекция 2. Фотоны: частицы света
Это вторая лекция цикла, посвященного квантовой электродинамике, и так как очевидно, что никого из вас не было на прошлой лекции (потому что я всех предупреждал, что никто ничего не поймет), я вкратце повторю основные положения первой лекции.
Мы говорили о свете. Первое важное свойство света заключается в том, что он состоит из частиц: когда очень слабый монохроматический свет (свет одного цвета) попадает в детектор, детектор щелкает с одинаковой громкостью и все реже и реже по мере того, как свет тускнеет.
Другое важное свойство света, обсуждавшееся в первой лекции, – это частичное отражение монохроматического света. От единственной поверхности стекла отражается в среднем 4 % всех попадающих на нее фотонов. Это уже неразрешимая загадка, так как невозможно предсказать, какие фотоны отразятся, а какие пройдут насквозь. Когда появляется вторая поверхность, результаты странные: вместо ожидаемых 8 % отражения от двух поверхностей частичное отражение то усиливается до 16 %, то совсем исчезает, в зависимости от толщины стекла.
Это странное явление частичного отражения от двух поверхностей может быть объяснено для интенсивного света волновой теорией, но волновая теория не может объяснить, каким образом детектор издает одинаково громкие щелчки, когда свет тускнеет. Квантовая электродинамика «разрешает» вопрос о корпускулярно-волновом дуализме света, утверждая, что свет состоит из частиц (как считал в свое время Ньютон). Но ценой этого великого продвижения науки стало отступление физики на позицию, где признается возможным только вычисление вероятности того, что фотон попадет в детектор, и не предлагается хорошей модели того, как это в действительности происходит.
В первой лекции я рассказал, каким образом физики вычисляют вероятность того или иного события. Они рисуют на листе бумаги стрелки в соответствии со следующими правилами:
– ВЕЛИКИЙ ПРИНЦИП. Вероятность события равна квадрату длины стрелки, называемой «амплитудой вероятности». Например, стрелка длиной 0,4 соответствует вероятности 0,16, или 16 %.
– ОБЩЕЕ ПРАВИЛО рисования стрелок, если событие может произойти разными способами: нарисовать стрелку для каждого способа и затем соединить стрелки («сложить» их), цепляя голову одной за хвост другой. «Результирующая стрелка» проводится от хвоста первой стрелки к голове последней. Квадрат результирующей стрелки дает вероятность всего события в целом.
Было также несколько специальных правил для проведения стрелок в случае частичного отражения от стекла (их можно найти на с. 36–39).