Теперь давайте складывать стрелки (рис. 24). Начиная со стрелки А, мы цепляем стрелки одну к другой, головой к хвосту. Теперь представим себе, что мы отправились на прогулку, а каждая стрелка соответствует одному шагу. Сначала мы уйдем недалеко, так как направление движения сильно меняется от одного шага к другому. Но через некоторое время стрелки начинают показывать примерно в одном направлении, и мы продвигаемся. А к концу прогулки направление от одного шага к другому опять резко меняется, и мы опять топчемся на месте.
Все, что остается теперь сделать, – провести результирующую стрелку. Мы просто соединяем хвост первой стрелки с головой последней и видим, насколько мы продвинулись в нашей прогулке (рис. 24). И обратите внимание – мы получили довольно длинную результирующую стрелку! Квантовая электродинамика предсказывает, что свет действительно должен отражаться от зеркала!
Теперь давайте разберемся. Что определяет длину результирующей стрелки? Мы замечаем целый ряд вещей. Прежде всего концы зеркала не играют существенной роли: там стрелки кружат и никуда не приводят. Если бы я отрезал концы зеркала – те части, возня с которыми, как вы инстинктивно чувствовали, была пустой тратой времени, это едва ли повлияло бы на длину результирующей стрелки.
Итак, где же та часть зеркала, которая в основном и определяет длину результирующей стрелки? Это та часть, где все стрелки направлены почти в одну сторону, потому что у них почти одинаковое время. Посмотрев на график, изображающий время для каждой траектории, вы увидите, что время почти одинаково для двух соседних траекторий внизу кривой, там, где время наименьшее.
Итак, наименьшее время там, где оно почти одинаково для соседних траекторий, где стрелки указывают почти в одном направлении и при сложении дают значительную длину. Именно там определяется вероятность отражения фотона от зеркала. Вот почему в грубом приближении приемлемо упрощенное представление о мире, согласно которому свет идет там, где время наименьшее (и легко доказать, что там, где время наименьшее, угол падения равен углу отражения, но у меня нет времени, чтобы вам это показать).
Таким образом, квантовая электродинамика дала правильный ответ: именно середина зеркала важна для отражения, – но этот правильный результат получен за счет допущения, что свет отражается от всего зеркала и при помощи сложения множества стрелочек, которые были нужны только для того, чтобы взаимно уничтожиться. Все это может вам показаться пустой тратой времени – глупой игрой в математику. Это вовсе не похоже на настоящую физику – иметь дело с чем-то, что только исчезает!
Давайте при помощи другого эксперимента проверим идею, что отражение действительно происходит от всей поверхности зеркала. Во-первых, отсечем большую часть зеркала и оставим около четверти его с левой стороны. У нас все еще имеется довольно большой кусок зеркала, только находится он в другом месте. В предыдущем эксперименте стрелки с левой стороны зеркала указывали в самых разных направлениях из-за большой разницы во времени между соседними траекториями (рис. 24). В этом эксперименте я собираюсь произвести более детальный расчет, используя гораздо меньшие интервалы между траекториями в левой части зеркала – настолько маленькие, что между соседними путями не будет большого различия во времени (см. рис. 25). На этой более детальной иллюстрации видно, что одни стрелки указывают больше вправо, другие – больше влево. Если мы сложим все стрелки, то получим, по существу, кольцо и нулевую результирующую стрелку.
Рис. 25. Для проверки предположения, что в действительности отражение происходит и на концах зеркала (но просто нейтрализуется и сводится на нет), поместим большое зеркало в неподходящее для отражения из S в Р место (см. рис. 24). Это зеркало разделено на гораздо меньшие кусочки, так, чтобы разница во времени для двух соседних траекторий была невелика. Сложение всех стрелок ничего не дает: они идут по кругу, и сумма их ничтожна.
Но давайте предположим, что мы аккуратно процарапали зеркало в тех участках, где стрелки склоняются в одну какую-то сторону – допустим, влево, так что останутся только участки, где стрелки указывают в основном в другую сторону (см. рис. 26). Сложив стрелки, направленные более или менее вправо, мы получаем последовательность «прогибов» и довольно значительную результирующую стрелку – согласно теории у нас должно теперь быть сильное отражение! И действительно, оно есть – теория правильна! Такое зеркало называется дифракционной решеткой, и его действие похоже на волшебство.
Рис. 26. Если сложить только стрелки, направленные в одну сторону (допустим, вправо) и пренебречь остальными (вытравив зеркало в этих местах), то от помещенного в неподходящее место зеркала отразится достаточное количество света. Такое протравленное зеркало называется дифракционной решеткой.
Не удивительно ли это – вы берете кусочек зеркала, где вы не ожидаете увидеть никакого отражения, сцарапываете часть его, и оно отражает![5]
Та решетка, которую я только что вам показал, была сделана специально для красного света. Она не действует, если свет синий; нам пришлось бы сделать другую, с вырезами, расположенными ближе друг к другу, потому что, как я говорил на первой лекции, стрелка часов крутится быстрее для синего фотона, чем для красного. Поэтому вырезы, рассчитанные специально на «красную» частоту вращения, приходятся на неправильные места для синего света; стрелки сбиваются, и решетка работает не очень хорошо. Но оказывается, что если мы передвинем фотоумножитель и поставим его под несколько иным углом, то решетка, сделанная для красного света, заработает для синего. Эта счастливая случайность является следствием геометрии (см. рис. 27).
Если вы будете светить на решетку белым светом, красный свет отразится в одном направлении, оранжевый в другом (чуть выше), за ним желтый, зеленый, голубой – все цвета радуги. Радужные цвета часто видны там, где рядом расположено много желобков – например, когда вы при ярком свете под правильным углом держите грампластинку (или, лучше, видеодиск). Возможно, вы видели замечательные серебристые значки (здесь, в солнечной Калифорнии, их особенно часто прикрепляют сзади на машины): когда машина едет, вы видите очень яркие цвета, переливающиеся от красного к синему. Теперь вы знаете, откуда берутся цвета: вы смотрите на решетку – зеркало, процарапанное как раз в нужных местах. Солнце – это источник света, а ваши глаза – детектор. Я мог бы продолжить и легко объяснить вам, как устроены лазеры и голограммы, но я знаю, что не все их видели, и к тому же есть много других вещей, о которых я должен рассказать[6].
Рис. 27. Дифракционная решетка с бороздками на определен-ном расстоянии, которая годится для красного света, годится также и для других цветов, но для этого нужно поместить детектор в другое место. Таким образом, можно увидеть, как от рифленой поверхности – например от грампластинки – отражаются разные цвета в зависимости от угла зрения.
Рис. 28. Природа создала много типов дифракционных решеток в виде кристаллов. Кристалл соли отражает рентгеновские лучи (свет, для которого воображаемая стрелка часов движется чрезвычайно быстро, – скажем, в 10 000 раз быстрее, чем для видимого света) под различными углами, что дает возможность точно определить расположение отдельных атомов и расстояние между ними.
Итак, решетка показывает, что мы не можем игнорировать те части зеркала, которые на первый взгляд ничего не отражают; пойдя с зеркалом на некоторые хитрости, мы можем продемонстрировать реальность отражения от всех частей зеркала и вызвать поразительные оптические явления.
И что более важно, реальность отражения от всех частей зеркала показывает, что амплитуда – стрелка – существует для каждого способа, которым может произойти событие. И чтобы правильно вычислить вероятность события в различных обстоятельствах, мы должны складывать стрелки для каждого способа, каким могло бы произойти событие, а не только для способов, которые кажутся нам наиболее важными!
Рис. 29. Согласно квантовой теории свет может попасть из источника, находящегося в воздухе, в детектор, находящийся под водой, разными путями. Если упростить задачу, как в случае с зеркалом, можно нарисовать график, показывающий время каждой траектории, а под ним – направление каждой стрелки. И опять основной вклад в длину результирующей стрелки вносят те траектории, чьи стрелки указывают почти в одном направлении, так как у них почти одинаковое время, и снова для этих траекторий время будет наименьшим.
Рис. 30. Выбрать самый быстрый путь для света – все равно, что выбрать самый быстрый путь для спасателя, который сначала бежит, а затем плывет, чтобы спасти утопающего. На самом коротком пути надо слишком долго плыть; на пути, где меньше всего плыть, надо слишком долго бежать; самый быстрый путь – компромиссный между ними.
Теперь я хотел бы поговорить о более знакомых вещах, чем решетки, – о том, как свет переходит из воздуха в воду. На этот раз поместим фотоумножитель под водой – мы полагаем, что экспериментатор может это устроить! Источник света находится в воздухе в точке S, а детектор под водой в точке D (см. рис. 29). Как и прежде, мы хотим вычислить вероятность того, что фотон попадет из источника света в детектор. Чтобы это вычислить, мы должны принять во внимание все возможные пути, по которым мог идти свет. Каждый путь вносит свою стрелочку, и, как и в предыдущем примере, все стрелочки имеют почти одинаковую длину. Мы опять можем построить график времени движения фотона по каждой из возможных траекторий. График будет представлять собой кривую, очень похожую на ту, что мы начертили для света, отраженного от зеркала: она начинается высоко, опускается и опять поднимается. Наибольший вклад дают те места, где стрелки указывают почти в одном направлении (где время почти не меняется от траектории к траектории), что соответствует нижней части кривой. Там же будет и наименьшее время, так что все, что нам надо сделать, это найти, где время наименьшее. Получается так, что свет распространяется в воде как бы медленнее, чем в воздухе (почему, я объясню в следующей лекции), что делает пробег по воде, так сказать, более «дорогостоящим», чем пробег по воздуху. Нетрудно понять, движение по какому пути занимает меньше всего времени: представьте себе, что вы спасатель и сидите в точке