A, H, I, J – к 32; В, К, Z, M – к 19; B, N, O, P – к 10; В, Q, R, S – к 4; Е, T, F, C – к 57; I, U, V, P – к 33; H, W, X, J – к 15; K, Y, Z, M – к 3; Е, a, b, D – к 82; H, d, M, D – к 56; H, e, f, G – к 42; K, g, f, С – к 32; N, h, z, F – K 24; К, h, m, b – к 14; К, О, S, D – к 16; K, n, p, G – к 10; К, q, r, J – к 6; Q, t, р, С – к 4; наконец Q, u, r, i приводит к 2 квадратам. Таким образом, общее число квадратов равно 575, Эти группы можно истолковывать так, как если бы каждая представляла квадрат отличного от других размера. Это верно, за одним исключением: квадраты группы B, N, О, Р имеют точно такой же размер, как и квадраты группы K, h, m, b.
5. Добрая женщина объяснила, что затычка, плотно загнанная в бочку, тем похожа на только что выпавшую, что обе они затыкают ничего; первая – ничего в смысле неплохо, а вторая – ничего в смысле ничего не затыкает. Маленькое недоразумение с родственниками легко разрешится, когда нам скажут, что родительский приказ исходил от отца (который также находился в этой комнате), а не от матери.
6. Головоломка, предложенная веселым хозяином харчевни «Табард» из Соуерка, оказалась более популярной, чем головоломки остальных паломников.
– Я вижу, любезные господа мои, – воскликнул он, – что здорово задурил вам голову своей маленькой хитростью. И все-таки для меня не составляет труда налить ровно по одной пинте в каждую из мер, одна из которых вмещает пять, а вторая – три пинты, не пользуясь никакими другими мерами.
Такими словами Трактирщик начал объяснять паломникам, как именно можно выполнить это на первый взгляд невыполнимое задание. Тут он наполнил обе меры, а затем, отвернув кран бочки, позволил пиву выливаться на пол (против чего вся компания энергично запротестовала; но хитроумный хозяин сказал, что он совершенно уверен – в бочке не многим более восьми пинт). (Уместно заметить, что количество вылившегося зля не влияет на решение головоломки.) Потом он закрыл кран и перелил содержимое 3-пинтовой меры назад в бочку. Далее Трактирщик наполнил эту меру из 5-пинтовой и вылил из нее пиво в бочку, затем он перелил 2 пинты из 5-пинтовой меры в 3-пинтовую, наполнил 5-пинтовую меру из бочки, оставив таким образом в бочке 1 пинту. Потом он наполнил 3-пинтовую меру из 5-пинтовой, позволил компании выпить содержимое 3-пинтовой меры, наполнил 3-пинтовую меру из 5-пинтовой, оставляя тем самым в 5-пинтовой мере 1 пинту, выпил содержимое 3-пинтовой меры и наконец вылил 1 пинту из бочки в 3-пинтовую меру. Таким образом, к величайшему изумлению и восхищению паломников, в каждой мере оказалось ровно по 1 пинте эля.
7. На рисунке показано, как именно следует разрезать квадрат на четыре части и как из них сложить магический квадрат. Можно проверить, что сумма чисел в каждой строке, столбце и на каждой диагонали равна 34.
8. Кусок гобелена следовало разрезать по прямым на три части и сложить из них квадрат, как показано на рисунке.
Заметьте, узоры идут в правильном порядке. Такой способ согласуется и с требованием, чтобы одна из трех частей была как можно меньшей (в данном случае она состоит лишь из 12 маленьких квадратиков).
9. Плотник сказал, что он сделал ящик, внутренние размеры которого в точности совпадали с размерами исходного бруса, то есть 3×1×1. Затем он поместил резной столбик внутрь ящика, а пустоты заполнил сухим песком, который он по ходу дела хорошенько встряхивал до тех пор, пока в ящик нельзя уже было ничего больше засыпать. Затем Плотник осторожно вынул столбик, внимательно следя за тем, чтобы не просыпать ни песчинки, встряхнул песок в ящике и показал, что он заполняет пространство ровно в один кубический фут. Значит, ровно столько дерева было удалено в процессе работы.
10. На рисунке показано, куда следует сдвинуть три стрелы на доске у входа в таверну «Шашки», чтобы при этом ни одна стрела не лежала на одной прямой ни с одной другой стрелой. Черные точки указывают первоначальное расположение передвинутых стрел.
11. Поскольку карт, составляющих слова CANTERBURY PILGRIMS, восемнадцать, выпишем по кругу числа от 1 до 18, как показано на рисунке. Затем напишем первую букву С рядом с 1, а каждую следующую букву рядом со следующим вторым числом, которое окажется свободным.[30]
Так следует поступать до второго R включительно. Если читатель закончит процесс, помещая Y рядом с 2, Р – рядом с 6, I – рядом с 10 и т. д., то он получит при этом буквы, идущие в следующем порядке: CYASNPTREIRMBLUIRG. Это и есть требуемый порядок с буквой С на верху колоды и G внизу ее.
12. Эта головоломка сводится к нахождению наименьшего числа, обладающего ровно 64 делителями, включая 1 и само число. Таким наименьшим числом будет 7560. Следовательно, паломники могут ехать гуськом, пара за парой, тройка за тройкой, четверка за четверкой и т. д. ровно 64 способами, причем последним способом будет 7560 всадников в ряд. Купец был осторожен, не упомянув, по какой дороге ехали всадники.
Для того чтобы найти число делителей данного числа N, положим N = ар bq cr…, где а, b, с – простые числа. Тогда число делителей, куда включены 1 и само N, будет равно (р + 1) (q + 1) (r + 1)…
Таким образом, в случае головоломки Купца:
следовательно, всего имеется 4×4×2×2 = 64 делителя.
Чтобы найти наименьшее число с данным числом делителей, мы должны воспользоваться методом проб и ошибок. Однако важно порой следить за тем, чтобы число имело данное число делителей, но не большее. Например, наименьшим числом с 7 делителями будет 64, хотя 24 обладает 8 делителями, а тем самым и 7. Требование «не большее» в данном случае не обязательно, поскольку не существует чисел, меньших 7560 и обладающих числом делителей, превышающим 64.
13. Наименьшее число шагов, за которое можно нужным образом расположить узников, равно 26. Узники передвигаются в следующем порядке: 1, 2, 3, 1, 2, 6, 5, 3, 1,2, 6, 5, 3, 1, 2, 4, 8, 7, 1, 2, 4, 8, 7, 4, 5, 6. Поскольку свободной всегда оказывается ровно одна темница, эти обозначения не могут вызвать недоразумений.
Эту диаграмму можно упростить с помощью так называемого метода «пуговок и веревочек». В результате получатся диаграммы, изображенные на рисунке, которые намного упростят решение. В случае А можно использовать фишки, в случае Б можно воспользоваться шахматными ладьями и уголком шахматной доски. В обоих случаях мы приходим к расположению
за наименьшее возможное число шагов.
См. также решение головоломки 94.
14. На рисунке показано, как Ткач разрезал квадратный кусок прекрасной ткани на четыре части одинаковых формы и размера так, чтобы каждая часть содержала вышитого льва и замок неповрежденными.
15. Было 4 порции пирога и 4 порции печеночного паштета, которые следовало распределить среди 8 из 11 паломников. Но 5 из этих 11 хотят есть только пирог, 4 – только паштет, а 2 – и то и другое блюдо. Любая возможная комбинация должна попасть в одну из следующих групп: 1) пирог распределяется целиком между первыми пятью из упомянутых паломников; 2) только одному из «всеядной» пары дается пирог; 3) пирог дается другому из этой пары; 4) пирог дается обоим из этой пары. Число возможных комбинаций соответственно равно: 1) 75; 2) 50; 3) 10; 4) 10, что в общей сложности дает 145 способов выбора восьми участников. В большинстве случаев называют ответ 185, просмотрев то обстоятельство, что в сорока случаях в группе (3) еду получают те же самые 8 гостей, что и в группе (2), хотя «всеядная» пара и ест предложенные блюда по-разному. Именно в этом месте просчиталась вся компания.
16. Числом, которое Пристав церковного суда назвал по секрету Батской ткачихе, было 29, а начать счет ей следовало с Доктора медицины, который стоял непосредственно справа от нее. Первый раз 29 выпадает на Шкипера, который выходит из круга. Второй раз счет падает на Доктора, который выбывает следующим. Оставшиеся три раза счет выпадает соответственно на Повара, Пристава и Мельника. Следовательно, все леди остались бы на ночлег в таверне, если бы не роковая сшибка доброй ткачихи. Вместо 29 можно было бы взять любое кратное 2520 плюс 29, причем счет следовало начинать с Доктора.
17. Монах мог поместить собак в конуры 2926 различными способами так, чтобы на каждой стороне было по 10 собак. Число собак может изменяться от 20 до 40; в этих пределах всегда можно расположить собак нужным способом.
Решение этой головоломки в общем виде не просто. В случае п собак на каждой стороне квадрата число различных способов равно
при п нечетном и
при п четном, если считать только те размещения, которые существенно различны. Но если мы будем считать все перевернутые и отраженные размещения различными, как и поступал сам Монах, то п (четное или нечетное) собак можно разместить
способами. Дабы возможно было поместить по п собак на каждой стороне, их число должно быть не меньше 2п и не больше 4п, но внутри этих границ его молено взять любым.
Обобщение принципа, лежащего в основе этой головоломки, приведено в задаче 42.
18. Существует 264 различных способа, которыми шхуна «Маделена» могла совершить десять ежегодных плаваний, не проходя ни по какому пути дважды. Каждый год она должна заканчивать плавание на том же острове, откуда она впервые отчалила.
19. Аббат из Черси был совершенно прав. Этот крест странной формы можно разрезать на четыре части, из которых затем удается сложить правильный квадрат. Как это сделать, показано на рисунке.