тическое развитие идей, убедительно, но в нематематической форме изложенных ранее Фарадеем. Изучение эфира подняло ряд вопросов, на которые не было дано вразумительных ответов, как, например, вопрос о движении материи через эфир. Знаменитый эксперимент Майкельсона – Морли в 90-х годах был проделан для решения этой проблемы, и он дал совершенно неожиданный ответ, а именно, что просто-напросто не существует способа определения движения материи через эфир.
Первое удовлетворительное разрешение проблем, поставленных этим экспериментом, дал Лоренц. Он указал, что если силы сцепления материи представить как электрические или оптические по своей природе, то следует ожидать отрицательного результата от эксперимента Майкельсона – Морли. Однако Эйнштейн в 1905 году придал этим идеям Лоренца форму, где невозможность наблюдения абсолютного движения выступала скорее постулатом физики, чем результатом какой-либо особой структуры материи. Для нас важно, что в работе Эйнштейна свет и материя покоятся на одинаковом основании, как это было до Ньютона, без ньютоновского подчинения всего веществу и механике.
Разъясняя свои взгляды, Эйнштейн разносторонне использует наблюдателя, который может находиться в покое или в движении. В теории относительности Эйнштейна невозможно ввести наблюдателя без одновременного введения идеи обмена информацией и фактически без того, чтобы вновь не заострить внимания физики на квазилейбницианском состоянии, тенденция которого является опять-таки оптической. Теория относительности Эйнштейна и статистическая механика Гиббса находятся в резком контрасте, поскольку Эйнштейн, подобно Ньютону, оперирует прежде всего
[с.33]
понятиями абсолютно строгой динамики, не вводя идеи вероятности. Напротив, работы Гиббса являются вероятностными с самого начала. Тем не менее оба этих направления исследований представляют сдвиг в воззрениях физики, где рассмотрение мира как действительно существующего заменено рассмотрением в том или ином смысле мира, каким его случается обозревать, и старый, наивный реализм физики уступает место чему-то такому, с чем мог бы охотно согласиться епископ Беркли.
Здесь уместно рассмотреть некоторые связанные с энтропией положения, о которых уже говорилось в предисловии. Как мы сказали, идея энтропии выражает несколько наиболее важных отклонений механики Гиббса от механики Ньютона. На взгляд Гиббса, физическая величина относится не к внешнему миру как таковому, а к некоторым рядам возможных внешних миров, и, следовательно, она относится к области ответов на некоторые специфические вопросы, которые мы можем задать о внешнем мире. Физика становится теперь не рассмотрением внешней вселенной, которую можно принять в качестве общего ответа на все вопросы о ней, а сводом ответов на гораздо более ограниченные вопросы. Действительно, мы теперь интересуемся уже не исследованием всех возможных выходящих и входящих сигналов, которые возможно получить и послать, а теорией гораздо более специфических входящих и выходящих сигналов, а это влечет за собой измерение уже далеко не безграничного объема информации, которую способны дать сигналы.
Сигналы являются сами формой модели (
pattern
) и организации. В самом деле, группы сигналов, подобно группам состояний внешнего мира, возможно трактовать как группы, обладающие энтропией. Как энтропия есть мера дезорганизации, так и передаваемая рядом сигналов информация является мерой организации. Действительно, передаваемую сигналом информацию возможно толковать, по существу, как отрицание ее энтропии и как отрицательный логарифм ее вероятности. То ,есть чем более вероятно сообщение, тем меньше оно содержит информации. Клише, например, имеют меньше смысла, чем великолепные стихи.
Я уже упоминал, что Лейбниц интересовался автоматами. Между прочим этот интерес разделял его современник Блез Паскаль, внесший действительный вклад в создание современного настольного арифмометра. В согласном ходе часов,
[с.34]
установленных на одно и то же время, Лейбниц усматривал образец предустановленной гармонии своих монад. Ибо техника, воплощенная в автоматах его времени, была техникой часовых мастеров. Рассмотрим движение маленьких танцующих фигурок на крышке музыкальной шкатулки. Они движутся по моделям, однако эта модель была установлена заранее, и здесь прошлое движение фигурок практически не имеет никакого отношения к образцу их будущего движения. Вероятность отклонения их движения от этой модели равна нулю. Здесь действительно имеет место передача сигнала, но этот сигнал поступает от механизма музыкальной шкатулки к фигуркам и остается там. Кроме этой односторонней линии связи с настроенным заранее механизмом музыкальной шкатулки, сами фигурки не имеют других связей с внешним миром. Они слепы, глухи и немы и ничуть не могут отойти в своем движении от обусловленной модели.
Сравните с этими фигурками поведение человека или любого обладающего в какой-то мере смышленостью животного, как, например, котенка. Я зову котенка, и он поднимает голову. Я послал ему сигнал, который он принял своими органами чувств и выражает в действии. Котенок голоден и издает жалобное мяуканье. На этот раз он источник сигнала. Котенок играет с клубочком ниток. Клубочек придвинулся слева к котенку, и котенок ловит его своей левой лапой. На этот раз в нервной системе котенка через известные нервные окончания его суставов, мускулов и сухожилий отдаются и принимаются сигналы очень сложной природы, и с помощью посылаемых этими органами нервных сигналов животное осознает свое действительное положение и напряжение своих тканей. Только благодаря этим органам возможно что-либо подобное физической ловкости.
Я сравнил предопределенное поведение маленьких фигурок в музыкальной шкатулке, с одной стороны, и произвольное поведение людей и животных – с другой. Однако не следует полагать, что музыкальная шкатулка является типичным образцом для поведения всех машин.
Старые машины действительно функционировали на основе закрытого часового механизма. Так же обстояло дело, в частности, и с прежними попытками изготовления автоматов. Однако современные автоматические машины, как, например, управляемые снаряды, радиовзрыватель, автоматическое устройство для открывания дверей, аппараты управления на химических заводах и другой современный
[с.35]
арсенал автоматических машин, выполняющих военные или промышленные функции, обладают органами чувств, то есть имеют рецепторы поступающих извне сигналов. Эти рецепторы могут быть такими простыми, как фотоэлектрические элементы, у которых изменяются электрические свойства, когда на них падает свет, и которые способны отличать свет от тьмы; или они могут быть такими сложными, как телевизионная установка. Они могут измерять напряжение благодаря изменениям, вызываемым в электропроводности подвергнутого его действию провода, или они могут измерять температуру посредством термоэлемента, представляющего собой прибор, состоящий из двух различных соединенных друг с другом металлов, через которые проходит ток, когда один из концов контакта нагревается. Всякий прибор в арсенале конструктора научных приборов представляет собой возможный орган чувств, и его при помощи соответствующих электрических аппаратов можно приспособить для записи показаний приборов на расстоянии. Таким образом, у нас есть машина, работа которой обусловлена ее зависимостью от внешнего мира и от происходящих там событий, и мы располагаем этой машиной уже в течение известного времени.
Машина, воздействующая на внешний мир посредством сигналов, также хорошо нам знакома. Автоматическое фотоэлектрическое устройство, открывающее двери лифта, известно каждому, кто проезжал через Пенсильванскую станцию в Нью-Йорке. Это устройство используется также и во многих зданиях. Когда сигнал, состоящий в прерывании пучка света, посылается в аппарат, этот сигнал действует на дверь и открывает
ее, позволяя пассажиру пройти.
Операции между приведением органами чувств в движение машины этого типа и выполнением этой машиной задачи могут быть столь же простыми, как в примере с электрической дверью, или они могут быть какой угодно степени сложности в пределах нашей инженерной техники. Сложное действие – это такое действие, когда вводные данные (которые мы называем
вводом –
input), для того чтобы оказать воздействие на внешний мир (это воздействие мы называем
выводом –
output), могут вызвать большое число комбинаций. Эти комбинации вызываются как вводимыми в настоящий момент данными, так и взятыми из накопленных в прошлом данных, которые мы называем
памятью.
Эти данные записаны в машине. Наиболее сложная из изготовленных
[с.36]
до сих пор машина, преобразующая вводные данные в выводные, – это быстродействующая электронная вычислительная машина, о которой я расскажу ниже более подробно. Режим работы этих машин определяется при помощи особого рода ввода, который часто состоит из перфорированных карт, лент или намагниченных проволок. Эти перфорированные ленты или намагниченные проволоки определяют способ выполнения этой машиной одной операции в отличие от способа, каким она могла бы выполнить другую операцию. Вследствие частого использования в управлении машиной перфорированных или магнитных лент нанесенные на них данные, предписывающие режим работы одной из этих машин, предназначенных для комбинированной информации, называются
программной катушкой
(taping).
Я отмечал, что человек и животное обладают кинестетическим чувством, с помощью которого регистрируют положение и напряжение своих мускулов. Для эффективности работы любой машины, подверженной воздействию разнообразной внешней среды, необходимо, чтобы информация о результатах ее собственных действий передавалась ей как часть той информации, в соответствии с которой она должна продолжать функционировать. Например, если мы управляем лифтом, то недостаточно просто открыть дверь шахты, ибо отданные нами приказы должны еще поставить лифт против двери п момент ее открытия. Необходимо, чтобы работа реле для открывания двери зависела от того факта, что лифт действительно находится против двери, иначе вследствие какой-нибудь задержки лифта пассажир мог бы ступить в пустую шахту. Это управление машиной на основе