Важно отметить, что, если частоту генератора можно изменять импульсами другой частоты, действующий механизм должен быть нелинейным. Действие линейного механизма на колебание данной частоты может произвести лишь колебание той же частоты, в общем случае с некоторым изменением фазы и амплитуды. Это перестает быть верным для нелинейных механизмов, которые могут производить колебания с частотами, равными суммам и разностям различных порядков от частоты генератора и частоты возмущения. Такой механизм может вызвать сдвиг частоты, и в рассматриваемом случае этот сдвиг будет иметь характер притяжения. Отнюдь не исключено, что притяжение окажется долговременным, вековым явлением и что в течение коротких промежутков времени система будет оставаться приближенно линейной.
Представим себе, что головной мозг содержит ряд генераторов частот, близких к 10 гц, и что в некоторых пределах эти частоты могут притягиваться друг к другу. При таких обстоятельствах частоты, вероятно, будут собираться в одну или несколько небольших групп, по крайней мере, на некоторых участках спектра. Частоты, собранные в эти группы, должны быть перемещены откуда-то, а потому в спектре образуются провалы, где мощность будет меньшей, чем следовало бы ожидать в противном случае. О том, что такое явление действительно могло иметь место в случае индивидуума, [c.289] автокорреляция которого показана на рис. 9, свидетельствует резкое падение мощности на частотах выше 9,0 гц. Падение это было бы нелегко обнаружить с теми низкими разрешающими способностями гармонического анализа, какие были доступны прежним авторам[200].
Чтобы сделать правдоподобным такое объяснение происхождения мозговых электрических волн, мы должны рассмотреть, существуют ли в головном мозгу предполагаемые генераторы и какова их природа. Профессор Розенблит из Массачусетсского технологического института сообщил мне о так называемом явлении остаточного разряда[201]. Если действовать на глаза световой вспышкой, то потенциалы коры головного мозга, которые можно коррелировать со вспышкой, не возвращаются сразу к нулю, а проходят через последовательность положительных и отрицательных фаз, прежде чем затухнуть. Форму этого потенциала можно подвергнуть гармоническому анализу, причем обнаруживается, что значительная часть мощности сосредоточена в окрестности 10 гц. Подобный результат по меньшей мере не противоречит изложенной здесь теории самоорганизации мозговых волн. Собирание таких кратковременных колебаний в одно непрерывное наблюдалось в других ритмах тела, каков, например, суточный ритм приблизительно в 231/2 часа, наблюдаемый во многих живых организмах[202]. Этот ритм изменениями во внешней среде может быть превращен в 24-часовой ритм дня и ночи. Биологически не существенно, равняется ли естественный ритм живых организмов в точности 24 часам, если только он может притягиваться к 24-часовому ритму под действием внешней среды. [c.290]
Интересным опытом, способным пролить свет на справедливость моей гипотезы о волнах головного мозга, могло бы, наверное, оказаться исследование светляков или других животных, подобных кузнечикам или лягушкам, которые могут излучать заметные световые или звуковые импульсы и также принимать их. Часто высказывалось предположение, что светляки на дереве вспыхивают в унисон, и это видимое явление приписывалось оптической иллюзии человека. Я слышал, что у некоторых светляков Юго-Восточной Азии это явление выражено столь резко, что его вряд ли можно приписать иллюзии. Но светляк действует двояким образом: с одной стороны, он излучает более или менее периодические импульсы, а с другой, — обладает рецепторами для этих импульсов. Не происходит ли здесь то же, предполагаемое, явление собирания частот?
Для такого исследования необходимы точные записи вспышек, чтобы их можно было подвергнуть точному гармоническому анализу. Кроме того, светляков нужно подвергнуть действию периодического света, например, от неоновой импульсной лампы, и определить, будет ли такой свет иметь тенденцию настраивать светляков на свою частоту. Если да, то нам следует попытаться получить точную запись этих спонтанных вспышек и подвергнуть ее автокорреляционному анализу, как в случае волн головного мозга. Хотя я не осмеливаюсь предсказать исход опытов, которые не ставились, подобное направление исследований кажется мне обещающим и не слишком трудным.
Явление притяжения частот возникает также в некоторых ситуациях, не связанных с живыми организмами. Представим себе ряд генераторов переменного тока, частоты которых регулируются регуляторами, приданными первичным двигателям. Эти регуляторы удерживают частоты в сравнительно узких полосах. Предположим, что выходы генераторов присоединены параллельно к сборным шинам, а с них ток идет на внешнюю нагрузку, которая в общем случае будет подвержена более или менее случайным флюктуациям, вследствие включения и выключения освещения и т. п. Чтобы избежать проблем, какие возникали на электростанциях прежнего типа в связи с участием человека в коммутации, предположим, что включение и выключение [c.291] генераторов происходят автоматически. Когда генератор доведен до скорости и фазы, достаточно близких к скорости и фазе других генераторов системы, автоматическое устройство подключает его к сборным шинам, а если случайно его частота и фаза отклоняются слишком далеко от надлежащих величин, аналогичное устройство автоматически отключает его.
В такой системе генератор, стремящийся вращаться слишком быстро и, следовательно, иметь слишком высокую частоту, берет большую долю нагрузки, чем ему полагается, а генератор, вращающийся слишком медленно, берет меньше своей нормальной доли. В результате частоты генераторов сближаются. Генерирующая система в целом действует как бы под управлением скрытого регулятора, более точного, чем регуляторы отдельных генераторов, и представляющего собой совокупность этих регуляторов вместе с электрическим взаимодействием между ними. Этим, по крайней мере частично, обусловлена точная регулировка частоты электрических генерирующих систем. Потому-то и возможно применение электрических часов высокой точности.
Я предлагаю, чтобы выходы таких систем были исследованы теоретически и экспериментально теми же самыми приемами, какими мы исследовали волны головного мозга.
С исторической точки зрения интересно, что на заре техники переменного тока делались попытки включать генераторы с постоянной величиной напряжения (такие же, как в современных генерирующих системах) не параллельно, а последовательно. Оказалось, что взаимодействие отдельных генераторов по частоте выражалось в отталкивании, а не в сближении. В результате такие системы были недопустимо неустойчивы, если только вращающиеся части отдельных генераторов не были жестко соединены общим валом или зубчатым механизмом. Напротив, параллельное подключение генераторов к общим сборным шинам оказалось внутренне устойчивым, что позволило соединять генераторы разных станций в единую автономную систему. Если воспользоваться биологической аналогией, то параллельная система обладала лучшим гомеостазом, чем последовательная система, и потому выжила, в то время как последовательная была устранена естественным отбором. [c.292]
Итак, мы видим, что нелинейное взаимодействие, создающее притяжение частот, может породить самоорганизующуюся систему, как в случае исследованных нами мозговых электрических волн или в случае сети переменного тока. Возможность такой самоорганизации отнюдь не ограничивается низкими частотами, свойственными этим двум явлениям. Представим себе, например, самоорганизующиеся системы на частотном уровне инфракрасного света или радиолокационных спектров.
Как нам уже приходилось говорить, одной из центральных проблем биологии является способ, посредством которого основные вещества, входящие в гены или вирусы, или, может быть, специфические вещества, вызывающие рак, воспроизводят себя из материалов, лишенных этой специфики, скажем из смеси аминокислот и нуклеиновых кислот. Обычно дается такое объяснение, что одна молекула этих веществ действует в качестве шаблона, с помощью которого меньшие молекулы компонентов смеси располагаются в определенном порядке и объединяются в аналогичную макромолекулу. По существу, это лишь оборот речи, лишь иной способ описания фундаментального феномена жизни, состоящего в том, что новые макромолекулы формируются по образу и подобию существующих макромолекул.
Как бы ни протекал такой процесс, это — динамический процесс, включающий какие-то силы или их эквиваленты. Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частотном строении ее молекулярного излучения, значительная часть которого лежит, по-видимому, в области инфракрасных электромагнитных частот или даже ниже. Может оказаться, что специфические вещества вируса при некоторых обстоятельствах излучают инфракрасные колебания, которые обладают способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое явление позволительно рассматривать как некоторое притягательное взаимодействие частот. Так как весь предмет остается еще sub judice[203] и подробности даже не сформулированы, я воздержусь от более [c.293] конкретных высказываний. Очевидный путь к решению состоит в том, чтобы изучить спектры поглощения и излучения большого количества вирусного вещества, например кристалла мозаичного вируса табака, и затем проследить действие света этих частот на образование дальнейших вирусов от существующего вируса в надлежащей питательной среде. Говоря о спектрах поглощения, я имею в виду явление, которое почти несомненно существует; что касается спектров излучения, то нечто подобное мы имеем в явлении флюоресценции.