ингера – основное уравнение нерелятивистской квантовой механики, которое позволяет определить возможные состояния системы, а также изменение состояния во времени.
Знаменитый ученый Лайнус Полинг писал о Шрёдингере: «На мой взгляд, будет справедливо сказать, что Шрёдингер, сформулировав своё волновое уравнение, несёт основную ответственность за современную биологию».
В конце лета 1927 года Эрвин Шрёдингер переселился в Берлин, чтобы возглавить кафедру теоретической физики в Берлинском университете, которой до него руководил Макс Планк. Тепло принятый новыми коллегами, Шрёдингер быстро освоился на новом месте. Годы жизни и продуктивной работы в Берлине он потом вспоминал как «прекрасные». Все рухнуло в 1933 году, когда к власти пришли фашисты: Эрвин Шрёдингер был из-за политической неблагонадежности, вычеркнут из всех университетских списков Германии и Австрии. Дабы избежать нацистских преследований, Эрвин Шрёдингер эмигрировал в Ирландию, где ему предложили место директора вновь созданного Дублинского института высших исследований. Здесь он проработал семнадцать лет, активно занимаясь не только физикой, но и философией, поэзией и даже биологией.
Непосредственный вклад Шрёдингера в биологию связан с его книгой «Что такое жизнь?». В ней автор ввёл концепцию отрицательной энтропии, которую живые организмы должны получать из окружающего мира, чтобы скомпенсировать рост энтропии, ведущий их к термодинамическому равновесию и, следовательно, к смерти. В последней главе Шрёдингер возвратился к своей мысли, проходящей через всю книгу и состоящей в том, что механизм функционирования живых организмов не согласуется с законами статистической термодинамики. По мнению Шрёдингера, открытия генетики позволяют заключить, что в ней нет места вероятностным законам, которым должно подчиняться поведение отдельных молекул; изучение живой материи, таким образом, может привести к каким-то новым неклассическим (но при этом детерминистическим) законам природы.
Очарованный достижениями биологии, он посвятил эту книгу хромосомным метаморфозам. Репликация, кроссинговер, митоз, мейоз с точки зрения физики. Размер атома равен от одной пятитысячной до одной двухтысячной длины волны света. Длина волны света говорит нам о мельчайших частицах, которые мы можем увидеть в оптический микроскоп. Любая мельчайшая частица содержит в себе сотни миллионов атомов, из которых состоит тело человека. Главная мысль этой книги – это осознание Шредингером, что человек – машина, состоящая из гигантского числа атомов, которые все работают в слаженном режиме и четко подчиняются физическим законам.
Организм подчиняется четкой детерминированной системе физических законов, нам остается лишь найти точку приложения этих законов, найти понимание того, как они управляют и работают. Этим мы и будем заниматься все последующие главы, начиная от теоретических построений и заканчивая практическими и методологическими моментами.
Пройдя вместе с Вами по стопам великих учителей науки, я надеюсь, мне удалось сформировать ощущение великого оптимизма и веры в будущие научные свершения, которыми буквально пронизан каждый из этих людей. В связи с этим и прежде чем приступить к детальному описанию термодинамической биологии и теории конвергентных биопроцессов, я хотел бы познакомить Вас с одним из прекраснейших изречений, когда-либо сказанных об ученых, как о людях, которые неутомимо открывают тайны природы, порой не жалея при этом даже собственной жизни. Фраза эта принадлежит персидскому поэту-суфию, ученому и реформатору, одному из величайших сынов Востока – Джалал-ад-Дину Мухаммаду Балхи Руми:
«Такие люди – хозяева мира. Если они отправляются в путь, луна и солнце служат им подушкой. Взнуздают они своих коней, и седьмое небо становится их ристалищем. Из звездных чаш вкушают они вино. Лишь в справедливости ратуют они друг с другом. Их лица веселее розы. Они свободней тополя. Их захлестывают волны крови, но их одежды сияют чистотой. Они все в шипах, но светел их лик. Они узники, но бродят, как бродит вино. Их сжигает адский пламень, но они с улыбкой дарят рай тем, кто в нем нуждается. Все в их власти, но они ни в ком не нуждаются, никому не молятся. Они и в грош не ставят султанов с бунчуками и знаменами. Им не нужны рукоплескания. Будь их хоть тысяча, все они – как один. В небе одна луна и одно солнце, а в их небесах бесчисленное множество и лун, и солнц. В каждой стране бывает один падишах, в их городе все падишахи. Нет там ни кадия, ни мухтасиба, ни начальника стражи, ни палача. Не знают они ни гордыни, ни ненависти. Поклоняются только друг другу. Один-единственный повелитель в этом городе, он живет в каждом сердце: любовь…»
Раздел II: Термодинамическая биология
В данном разделе речь пойдет об основах термодинамической биологии, представленных такими составляющими, как:
1. Учение о иерархично-соподчиненных термодинамических сферах, основной задачей которого является объяснение того, каким образом законы физики, действуя на биовещество, приводят не к уничтожению последнего, а наоборот организуют его в сложнейшие структуры;
2. Специальные теории биологической термодинамики, представляющие собой логические ключи, созданные для описания нарушений в основных принципах работы организма, приводящих к болезням, старению и смерти, а также поиска методов их устранения;
3. Прикладная медицинская термодинамика, задачей которой является клинический и патофизиологический разбор основных патологических состояний организма, начиная от гипертонии и заканчивая старением, которое впервые рассматривается именно как заболевание, а не как естественный процесс;
4. Методология термодинамического воздействия на организм, открывающая путь к созданию новых, сверхэффективных медицинских протоколов, позволяющих излечивать основные заболевания, включая онкологию и само старение.
1. Учение об устройстве иерархически соподчиненных термодинамических сфер в структуре организма
Целью создания и развития «учения о соподчиненных термодинамических сферах» является упорядочивание многочисленных и разрозненных данных о принципах функционирования живой материи. «Учение о сферах» позволяет вести научный поиск методов лечения различных заболеваний на качественно новом уровне, однако фундаментом учения являются незыблемые законы физики, фундаментальные исследования великих умов разных эпох и эксперименты, которые преподносит нам сама природа. Учение о сферах является неким увеличительным стеклом, направив которое на организм, мы можем разглядеть удивительную гипотетическую физическую термодинамическую модель функционирования живого организма. Термодинамические сферы есть удобные ментальные инструменты для изучения «физики организма» с целью поиска физически обоснованных и оправданных методов лечения социально значимых заболеваний.
Первая термодинамическая сфера
Как родилась эта идея….
В свое время я с удовольствием прочитал книгу Иосифа Самуиловича Шкловского – «Вселенная. Жизнь. Разум». Он так живописно описал теорию соподчинения управляющих систем на нескольких страницах, что в голове сразу возникла четкая картина существования внешней мембраны и центра внутри, который, считывая информацию с мембраны, уже оперирует потоками вещества и энергии, которую необходимо поглотить и выделить в окружающую среду. Осознав, насколько удобно и доступно можно сконструировать сложнейшие процессы, проистекающие в живой природе, у меня мгновенно родилась идея отразить совокупность механизмов работы живого вещества в виде «сфер-матрёшек». И прообразом первой сферы стало описание «сферы Дайсона» в книге Шкловского. Фримен Джон Дайсон, наш современник, американский физик-теоретик предположил возможность существования во вселенной некоего гипотетического астроинженерного проекта в виде сферы, представляющей собой относительно тонкую сферическую оболочку большого радиуса (порядка радиуса планетных орбит) со звездой в центре. Предполагается, что технологически развитая цивилизация может применять подобное сооружение для максимально возможного использования энергии центральной звезды и/или для решения проблемы жизненного пространства. Согласно теоретическим расчётам для сооружения сферы Дайсона вокруг Солнца необходимо вещество с массой порядка массы Юпитера.
Осознание, пусть даже лишь мизерной вероятности существования такой структуры, произвело на меня огромное неизгладимое впечатление. Тот факт, что разрозненные мелкие частицы системы, коими являются отдельные индивидуумы, при наличии разума и должном целевом управлении, могут создавать подобные грандиозные объекты не может не впечатлить! Это яркий пример космического масштаба, который иллюстрирует, насколько может быть огромной, гармоничной и стабильной управляемая система и насколько велика роль разума в управлении этой мегасистемой. Вероятно, что подобные объекты на самом деле существуют во вселенной. Просто они так далеки, что сегодня непонятно, как обнаружить и измерить их излучение с помощью спектрометрии. Последние научные данные позволяют нам говорить о том, что в отличие от гипотетических форм, мы уже достаточно приблизились к практическому наблюдению подобных структур.
Речь идет о звезде Табби, признаки странного поведения которой выявил космический телескоп Кеплер, постоянно наблюдавший за звездой с 2009 по 2013 год. Астрономы, гражданские ученые и компьютеры занялись поиском причины периодического уменьшения яркости излучения звезды – того признака, что вокруг нее движется экзопланета. Крупнейшие планеты могут блокировать до 1% света звезды, но звезда Табби теряет до 20% яркости. И это было бы странно уже само по себе. Но периодические затемнения не происходили с регулярными промежутками времени – они были спорадическими. Такую сигнатуру планета не объясняла. Ничего в наблюдениях не указывало на возможную причину помех. После рассмотрения различных возможных сценариев, ученые сошлись во мнении, что пыль от крупного облака комет была бы лучшим объяснением, но подобное объяснение было натянуто, поскольку сложно подобрать настолько крупные кометы, которые будут блокировать так много света звезды.
Альтернативное объяснение нашлось после заявления астронома Джейсона Райта о том, что за сигнал может быть ответственна продвинутая внеземная цивилизация, которая построила мегаструктуры вроде солнечных панелей вокруг звезды. Новые результаты также изменили требования к гипотезе с мегаструктурами инопланетян. Общее затемнение можно было бы объяснить массивной инопланетной сферой вокруг звезды. Астрономы подсчитали, что инопланетянам потребовалось бы отстроить минимум 750 миллиардов квадратных километров солнечных панелей, чтобы обеспечить 20-процентное падение яркости звезды. Это в 1500 раз больше площади Земли.
Таким образом, прообразом первой термодинамической сферы можно считать сферу Дайсона.
Итак, ПЕРВАЯ СФЕРА. Для удобства восприятия читателем представленного материала, изложенного в данной книге, нам будет необходимо ввести основные понятия – мембрана, управляющий центр и передающая среда. У меня родилась идея развернуть организм человека в виде мембран, контактирующих с внешней средой. Например, площадь слизистой оболочки кишечника или кишечной мембраны – если развернуть каждую ворсинку толщиной в одну клетку, – по данным разных авторов, составит примерно 200 квадратных метров. Если же взять мембрану лёгочной ткани, альвеолярную, то получится около 80 квадратных метров. Это и есть две основных мембраны, контактирующие с внешней средой. То есть, если человека представить в виде сферического аэростата, то мы увидим схожую картину. Огромная по площади сфера, которая воспринимает энергию, вещество и информацию от внешней среды. Эта информация поступает в управляющий центр – ствол головного мозга – и обрабатывается там, после чего запускается комплекс энергетических и биохимических процессов с целью адаптации к внешней среде, сохраняя при этом энергетический баланс внутренней среды. Почему именно сфера? Это удобно для нашего понимания. Нас еще со школы и института учат рисовать клетку в виде круга с ядром внутри. Возможно гипотетически предположить, что человек ни что иное, как большая клетка, состоящая из триллионов маленьких клеток, но чтобы не обманываться видимостью физической формы тела, мы это упрощаем в нашем понимании и превращаем в сферы. По аналогии ядро-цитоплазма. Ядро – управляющий центр. Цитоплазма – передающая среда.
В этом месте нашего повествования я хотел бы заострить внимание читателя на переходе научных взглядов с чисто медико-биологических к биофизическим. Такой переход стал возможен лишь благодаря работам А. А. Ляпунова в области математической биологии, суть которых сводится к двум проблемам: первая – это проблема устойчивости процессов управления в живых системах, а вторая – проблема осознания и описания структуры иерархически соподчиненных управляющих систем в живой природе. Именно представив организм в образе «первой сферы», мы получаем возможность четко и понятно применить математический инструментарий Ляпунова к описанию и компьютерному моделированию этого уровня организации управления в живом организме. Таким образом, четко прослеживаются этапы эволюции научного понимания: первый – медико-биологический, второй – математико-кибернетический, третий – биофизический, когда через математическое осознание функционирования живого объекта мы выходим на уровень понимания работы организма с точки зрения законов физики. И наиболее подходящей для этого областью физики, естественно, предстает нелинейная термодинамика диссипативных систем Пригожина.
Почему именно термодинамическая сфера? Потому что это очень удобно со стороны оценки работы системы. Термодинамика – это область физики, которая изучает принципы работы любых систем. Открытых и закрытых. Самостоятельных и зависимых. С дополнительной энергией и без. Живых и неживых. Разных. То есть термодинамика не изучает работу каких-либо конкретных составных частей, термодинамика изучает, как работает организм в целом. Что в целом происходит, каков глобальный ответ и какая происходит адаптация. Термодинамика есть предшественница системного анализа, общей теории управления, биологической кибернетики и многих других междисциплинарных научных ростков. Образ сферы позволяет сформировать гипотетическую модель человека как шара, имеющего определенные мембраны. Работа данной модели может быть описана формулами, используемыми в физике и математике. В дальнейшем это будет полезно при компьютерном моделировании тех или иных процессов, происходящих в живой материи. В первую очередь, это первый закон термодинамики в классическом виде, а также в синтезе с другими формулами и теоремами. Первый закон термодинамики здесь рассматривается как основополагающий описательный принцип распределения энергии. Суть его в том, что энергия делится на внутреннюю энергию и на энергию, затрачиваемую для совершения системой работы. Если же у пытливого читателя появится необходимость найти способ построения конкретно математической модели живой природы, ему будет полезно обратиться к общей теории управления Зубова и принципу «бэнг-бэнг» в теории оптимального управления Ляпунова.
Но вернёмся к предмету нашего обсуждения. Термодинамические сферы были придуманы мною для упрощения визуализации сложных процессов и для того, чтобы любознательный читатель мог легче познавать теоретическую часть термодинамической биологии, используя эту модель. Термодинамическая сфера – это хороший удобный виртуальный инструмент. Можно сказать, это адаптированная визуализация математических и физических формул. Сухие формулы, переведенные в ощущения, в образное мышление.
Далее я начал «играть со сферой», то есть проводить мысленные эксперименты для выявления причины того, как работает организм, и на примере первой сферы увидел, что есть некая проблема, связанная с несоответствием площадей развернутых мембран и тем энергетическим вкладом, которые они привносят в метаболизм. Учитывая, как тяжело переносит организм кислородное голодание, площади легочной мембраны казалось явно недостаточно относительно кишечной мембраны. Возникает вопрос: почему без воздуха, который взаимодействует с легочной мембраной, организм может продержаться намного меньше, нежели без воды и еды, которые взаимодействуют с кишечной мембраной? Почему так важна именно легочная мембрана при меньшей площади? Решение оказалось на поверхности. После некоторых раздумий я пришел к выводу, что полезное действие данных мембран необходимо оценивать не по площади, а по эффективности энергетического воздействия на метаболизм!
Как мы знаем, реакция аэробного дыхания дает 36 молекул АТФ на 1 молекулу глюкозы, против реакции анаэробного гликолиза, которая дает лишь 2 молекулы АТФ на 1 молекулу глюкозы. Путем простых вычислений, мы получаем коэффициент эффективности метаболизма каждой из мембран (1440 условных энергетических единиц для легочной мембраны и 200 для кишечной), и приходим к выводу, что вклад в энергетический баланс при аэробном обмене, будет в семь раз выше, чем при анаэробном. Этот энергетический коэффициент нам очень важен для дальнейшего изучения законов, согласно которым функционирует живая материя.
Еще в 1966 году, нобелевский лауреат в области физиологии и медицины, немецкий биохимик Отто Варбург, о котором я ранее упоминал в исторической справке, отметил, что «первопричина рака – это замена дыхания с использованием кислорода в теле нормальной клетки на другой тип энергетики – ферментацию глюкозы». Итого: баланс аэробного-анаэробного вклада в «энергетический котел» играет ключевую роль в функционировании организма.
После того, как был установлен энергетический баланс мембран я попытался визуализировать термодинамическую сферу в виде шара. Площадь шара – это мембраны, легкие и кишечник; точка в центре круга – это управляющий центр, в данном случае – это ствол головного мозга. Далее возник вопрос, каким образом передать информацию от мембран к управляющей системе, в которую уже заложены определенные рамки адаптации, и обратно? Как сделать так, чтобы вся информация интегрально (то есть обобщенно) быстро, адекватно, постоянно и бесперебойно поступала от мембран первой сферы к управляющему центру первой сферы? Нужно было выявить какой-либо передающий канал.
Если мы обратим внимание на структуру клетки, мы отметим наличие среды между ее оболочкой и ядром, а именно – цитоплазмы. В человеческом организме, по аналогии с клеткой и цитоплазмой, передающей средой является кровь. Она постоянно находится одновременно и на мембранах, и внутри управляющих систем. Сердце играет также немаловажную роль в передаче информации – оно осуществляет механическую передачу информации от мембран к управляющему центру и обратно, путем переноса растворенных в плазме крови определенных веществ – газов, пептидов и аминокислот, гормонов и прочих активных биохимических субстанций. Очень важную роль играют сосуды, которые как раз и являются каналами передачи информации.
Я давно прицельно обратил внимание на анатомию этих сосудов, с которыми работал уже много лет. У нас есть четыре артерии, которые доставляют кровь в головной мозг – это две вертебральных артерии и две внутренних сонных артерии. Данная информация должна гарантированно доходить от сердца до мозга без искажения. В данном случае артерии являются транспортными магистралями, каналами для передачи информации. Самое интересное, что если мы обратим внимание на анатомию кровоснабжения ствола головного мозга, мы увидим, что все эти четыре артерии соединяются в одну – базилярную артерию, она представляет собой цистерну, которая соединяет между собой внутренние сонные и позвоночные артерии. И уже из базилярной артерии отходят ветки к стволу мозга. Фактически, это путь от сердца к управляющей системе. Поэтому, если каким-либо образом скорость поступления информации по этому пути уменьшается за счет внешнего воздействия, возникает ситуация, когда управляющий центр получает искаженную информацию, что в свою очередь приводит к возникновению ряда патологических состояний, которые мы рассмотрим в разделе «Прикладная медицинская термодинамика».
Забегая вперед, для упрощения восприятия вышесказанного, приведем наиболее яркий клинический пример: остеохондроз шейного отдела позвоночника, нестабильность 3-го и 4-го шейных позвонков, сужение просвета позвоночных артерий и вен, уменьшение скорости циркуляции крови в бассейне ствола мозга. Произошло нарушение скорости передачи информации. В первую очередь это касается концентрации кислорода в крови, но не ограничивается этим параметром. Весь ствол мозга стал получать неправильную информацию от всех органов и систем из-за неполного сдавливания позвоночных артерий и вен!
Сначала мозг оценивает сложившуюся ситуацию как временное снижение уровня концентрации кислорода в атмосфере, при том, что на самом деле в атмосфере концентрация кислорода не поменялась. В ответ на получение искаженной информации, управляющий центр активируется и с помощью нервно-мышечной передачи пытается компенсировать недостаток кислорода в организме путем увеличения частоты сердечных сокращений и повышения артериального давления. Это яркий пример слаженной работы первой и второй термодинамических сфер, ничто иное, как пример быстрой адаптивной реакции. То есть, так называемую эссенциальную или идиопатическую артериальную гипертензию следует отнести именно к реакции адаптации организма, а не к патологическому состоянию. Только на одном этом примере мы можем себе представить, насколько важно беспрепятственное прохождение биохимической информации от мембран к управляющему центру. Таких примеров в нашей книге будет достаточно. Для этого есть специальный раздел – прикладная медицинская термодинамика, где будут подробно разобраны как заболевания, так и адаптивные реакции организма на изменение внешней среды.
Внесем еще одно ключевое понятие о первой сфере. Представим человека как огромный шар, который находится в некой гипотетически «идеальной» среде, где снаружи, там, где легочная мембрана, – постоянная концентрация кислорода и других газов, температура и давление, а кишечная мембрана погружена в идеальный бульон тоже с идеальными условиями. Поскольку это гипотетическая модель, мы сознательно не будем учитывать влияние второго закона термодинамики для упрощения подачи материала. В дальнейшем мы введем такое понятие, как принцип самообновления, которое нам позволит строить любые гипотетические модели, не нарушая термодинамических принципов.
Итак, при идеальных условиях передачи биохимической информации, эта сфера может существовать в идеальном равновесии сколь угодно долго – вечно. Если же появится малейшее нарушение передачи информации от мембраны к управляющей системе, сразу же возникнет биохимический дисбаланс – метаболический синдром, и если вовремя не устранить это нарушение передачи, путем воздействия на причину возникновения, этот дисбаланс со временем неизбежно приведет к прекращению существования данной системы. Биохимическое угасание будет иметь вид последовательных деструктивных изменений по направлению от мембраны к центру. Если описываемые процессы рассматривать по отношению к единичной клетке – это будет деструкция плазматической оболочки, затем клеточных включений и, в конце концов, клеточного ядра. Если же методически рассматривать ситуацию в целом по отношению к организму человека, можно привести следующую схему: компрессия сосудов – артериальная гипертензия – метаболический синдром – единичные атеросклеротические бляшки – сужение просвета магистральных сосудов – ишемический инсульт – смерть. Итогом любых нарушений передачи в управляющей системе первого уровня будет постепенный дисбаланс, начиная от мембран и далее по пути к самому управляющему центру.
Таким образом, первая термодинамическая сфера, это анатомо-физиологическая структура, которая состоит из легочной и кишечной мембран, крови – как передающей среды и ствола мозга в качестве управляющего центра. Первая термодинамическая сфера полностью подчинена принципам функционирования второй сферы, к описанию которой подошло наше повествование.
Вторая термодинамическая сфера
Несмотря на то, что первая термодинамическая сфера является ярким примером управляемой системы, у нее есть существенный недостаток – она может существовать исключительно в идеальной среде, чего не наблюдается в реальной жизни. Вследствие этого возможности первой сферы сильно ограничены. Окружающая среда, как правило, агрессивна в той или иной степени по отношению к организму. Такие факторы, как температура воздуха, атмосферное давление, состав воды, уровень солнечной радиации активно влияют на живую материю, то есть окружающая нас среда – это далеко не «идеальные условия» в отличие от гипотетической модели. Каким же образом организм компенсирует колебания постоянства среды? На этот вопрос нам поможет ответить вторая термодинамическая сфера.
Функция и суть существования второй сферы сводятся к обеспечению стабильности окружающей среды на мембранах первой сферы. То есть, вторая сфера следит за внутренними показателями первой и осуществляет подстройку к внешним факторам. Со временем ко мне пришло понимание, что путем эволюции появились механизмы, которые в автоматическом режиме помогают организму подстроиться под изменения внешней среды в режиме «по требованию». Эти механизмы позволяют контролировать частоту дыхания, уровень биологически активных веществ в крови и прочее. Совокупность этих механизмов я определил, как вторую термодинамическую оболочку. Ведь фактически наше тело и есть вторая сфера, в которой управляющим центром является область головного мозга, которая отвечает за безусловные рефлексы.
Мембраной будет являться кожа, рецепторы и органы чувств, а проводящей средой, соответственно, нервная ткань. Каким конкретно образом функционирует вторая сфера? Во-первых, это контроль дыхания, его частота и глубина, то есть контроль над количеством вдыхаемого воздуха.
Во-вторых, это пищевой инстинкт – автоматический контроль над количеством и качеством поглощаемых питательных веществ путем процесса добывания пищи, а это уже использование нервно-мышечной передачи. К проявлениям работы второй сферы также относится инстинкт самосохранения. Следует отметить тот факт, что вторая сфера подчиняется определенным биоритмам. При массивных затратах энергии, которые ей необходимы для стабилизации внутренней среды обеих сфер, требуется чередование периодов сна и бодрствования. Чтобы организм имел возможность восстановиться, регенерировать.
Все вышеперечисленные механизмы в высшей мере изучены и описаны великим русским ученым, первым российским нобелевским лауреатом Иваном Петровичем Павловым. В 1903 году на Мадридской конференции, И. П. Павлов впервые сформулировал принципы физиологии высшей нервной деятельности, которой он и посвятил последующие тридцать пять лет своей жизни. Уже тогда старейшина физиологов приоткрыл тайну управляющих систем на уровне нервной проводимости. Мы лишь представляем оптимизированный взгляд, который бы позволил максимально удобно визуализировать сложные процессы энергетического обмена, происходящего в живой материи. Для этого я руководствовался научным принципом использования соподчиненных иерархично систем Ляпунова или «методом матрешки», когда мы имеем возможность последовательно поместить термодинамические сферы одну в другую.
Для того, чтобы в полной мере отвечать функциям хранителя первой сферы вторая термодинамическая сфера должна обладать высокой энергичностью: иметь более высокий и быстрый энергетический обмен, энергетический запас и стабильность структур. Также ведущую роль имеет непрерывный быстрый информационный обмен между двумя сферами для их слаженной работы. То есть вторая сфера должна иметь высокую реактивность. Пищу нужно догнать, поймать и еще остаться самому при этом в живых, поэтому скорость передачи информации должна быть намного выше.
Чтобы достичь высокой скорости передачи информации, в работе второй сферы используется принцип «многоканальности» – нервные волокна по аналогии можно сравнить с оптоволокном, где информация передается не диффузно, а целенаправленно. В этом есть значимое отличие механизма распространения информации первой и второй сфер: первая – диффузный тип (гуморальный), вторая – многоканальный, целенаправленный механизм передачи и реагирования по типу «реле».
Представим себе ситуацию: рецепторы каким-либо образом фиксируют изменения гомеостаза на мембранах и/или изменения состава крови; в мозг посылается нервный импульс, биологическое реле срабатывает – возвращается ответный сигнал на запуск компенсаторных механизмов. Пример – долгий перерыв без принятия пищи, снижение уровня глюкозы в крови. Сначала возникает чувство голода, которое стимулирует к поиску пищи. Если пищу найти невозможно, срабатывает виртуальное биологическое реле и запускаются механизмы возобновления энергетического баланса за счет использования собственных ресурсов – получение энергии из печени, жирового депо, мышц и прочих резервов. Если говорить о такой критической ситуации как переохлаждение или острая кровопотеря, – централизация кровообращения для максимально долгого поддержания жизнедеятельности именно тот механизм, работу которого обеспечивает вторая сфера.
Вторая термодинамическая сфера функционирует по тем же законам и формулам, что и первая, но при этом количество энергии, циркулирующее по контурам второй сферы, гораздо выше по сравнению с энергетическим потенциалом первой сферы, что, собственно, и позволяет второй сфере обеспечивать, за счет своих ресурсов, бесперебойное функционирование первой сферы.
Если выразиться по-другому, то вторая сфера более приспособлена к изменениям внешней среды, чем первая именно за счет наличия в ней гораздо большего количества запасенной энергии.
В данном месте будет не лишним разобрать такое понятие, как «фрактальность» (самоподобие). Это понятие позволяет нам увидеть, что на каждом уровне иерархической организации живого вещества, мы можем использовать для описания процессов одни и те же математические подходы, с разницей лишь в количестве джоулей энергии, которыми собираемся оперировать. На микроуровне (биохимические подходы) мы будем пользоваться микроджоулями, а на уровне, например, биологического вида нам придется столкнуться с мегаджоулями, однако математический инструментарий будет прежним – фрактально-применимым (то есть на уровне математического аппарата мы наблюдаем самоподобие уравнений на уровне полной идентичности).
Таким образом, признаки второй сферы:
– Может активно перемещаться в агрессивной внешней среде и реагировать быстрее, чем первая сфера.
– Обеспечивает стабильность первой, за счет своих энергозапасов (печень, жир, мышцы и пр.) – поддерживает баланс биологически активных веществ и газов крови.
– Оберегает первую сферу и возобновляет через нее свои ресурсы, так как первая сфера является энергетическим реактором, который может собрать и аккумулировать энергию внешней среды.
– Вторая сфера – это анатомо-физиологическое образование, которое, по сути, представляет нашу физическую оболочку, наше тело.
– В отличие от первой сферы передача информации происходит не диффузно, а по выделенным высокоскоростным каналам, коими являются пучки нервных волокон.
– Соблюдается принцип фрактального действия физических законов.
Третья термодинамическая сфера
«Я не хочу, чтобы меня создавала окружающая среда. Я хочу сам создавать эту среду». Фраза из к/ф «Отступники» (режиссер М. Скорсезе)
Как мы уже отметили, контроль основных процессов, проистекающих на уровне второй сферы, осуществляется в автоматическом режиме. Дальнейшее совершенствование живой природы приводит нас к возникновению разума и вместе с ним к появлению сферы совершенно иного качества – третьей термодинамической сферы или сферы разума. Данная сфера представлена только у человека, её управляющая система – это корковое вещество головного мозга. Особенность разума в том, что он может качественно влиять на окружающую среду. Не количественно, как вторая сфера, путем дыхания и еды (ЧДД, количество съедаемой пищи и т.д.), а именно качественно. Разум можно объединить с некой гипотетической сферой, выстроенной вокруг тела человека, в которой он, используя мыслительный процесс (науку по Мечникову), может создавать различные комбинации и концентрации каких-либо веществ, либо изменять качественные показатели окружающей среды – давление, температуру и др. Например, это создание и прием лекарственных препаратов, приготовление пищи, фильтрация воды, изменение температуры и состава. То есть человек осознанно использует энергию внешней среды с целью изменения условий для обеспечения своего комфортного существования. Это любая физическая активность, не связанная с инстинктивными реакциями, а обусловленная разумной деятельностью.
Третья сфера – это некоторое представление, которое укладывает наличие разума как необходимого звена в единую цепочку соподчиненных термодинамических сфер. В такой цепочке разум необходим для качественного влияния на окружающую среду. Третья сфера полимембрана. Отличительная особенность её в том, что мембрана третьей сферы может создаваться непосредственно управляющей системой. В качестве примера, это и теплая одежда, которую мы надеваем, чтобы согреться, это и рабочий кабинет с кондиционером, это бассейн с подогретой водой и т.д. Если привести не обыденный, а высокотехнологичный пример, то это барокамера для проведения гипероксигенации, космический корабль и прочее.
Можно привести тысячу примеров. Это все то, чем мы окружаем себя каждый день для поддержания существования. И это пример управления внешними силами и энергиями для того, чтобы сделать их достоянием первых двух сфер.
Следует сказать об одной особенности. Она заключается в том, что существует переход количества энергии из одной сферы в другую, то есть, если, например, в первой сфере заканчивается энергия, то она может забрать недостающее количество энергии из второй, соответственно вторая сфера может получить энергию извне посредством третьей сферы. Это гипотетический фундаментальный постулат. За счет получения энергии извне, третья сфера оптимизирует условия существования второй сферы таким образом, чтобы это существование продолжалось сколь угодно долго. Однако до настоящего момента реализовать некую систему вечного существования на практике не представлялось возможным. Даже наличие развитого интеллекта не гарантирует получение рецепта вечной жизни без понимания принципов иерархического взаимодействия термодинамических сфер между собой и окружающей средой.
Третья сфера устроена таким образом, что постоянно уменьшает энтропию, то есть упорядочивает все процессы, которые происходят внутри нее. Она функционирует согласно диссипативным уравнениям Пригожина. В этом она схожа с механизмом синтеза, о котором мы расскажем в следующей главе, и именно поэтому она имеет возможность дополнить то, что не доделал механизм синтеза. Физический смысл третьей сферы – это продление срока жизни биосистемы путем максимальной стабилизации живого вещества. Требуется смена нескольких поколений, одаренных людей, чтобы разгадать тайну биологического равновесия. Возьмем, к примеру, теорию эволюции Дарвина. До него были труды Ламарка, без которого Дарвин не смог бы создать свою теорию. Сегодня это уже дополненная «синтетическая теория эволюции». Для того, чтобы обеспечивать непрерывный процесс эволюции, природа создала такую способность как размножение.
Эмбрион, который находится в матке, развивается не сам по себе, а под чутким контролем состава окружающей и внутренней среды плода (через гемато-плацентарный селективный барьер), который осуществляет материнский организм. Для плода создается оптимальный баланс температуры, давления и биохимических реакций. Ребенок в утробе матери – это яркий пример реализации третьей сферы в природе. Таким образом, этот маленький организм растет и развивается в идеальных условиях, автоматически поддерживаемых организмом матери. После рождения сфера разума включается далеко не сразу: сначала мы имеем «неразумное дитя», и лишь после психологического созревания можно говорить о возможном включении в процесс третьей сферы. От полутора до трех лет – это вторая сфера в чистом виде. Пока родители решают за ребенка вопросы его комфорта – надеть или снять кофточку, например – они являются его третьей сферой. Поэтому с позиций термодинамических взглядов, момент рождения ребенка не совпадает с моментом возникновения у него третьей сферы. Путь второй сферы у ребенка продолжается вплоть до обретения им самостоятельности, до того момента, когда он, уже будучи сформированной личностью, не будет зависеть от помощи родителей или каких-либо попечителей вплоть до государства.
Управляющая система третьей сферы зиждется на трех понятиях: первое – БИОС – чувство самоидентификации, чувство разума, чувство сознания. Это чувство в принципе одинаково у всех разумных существ и рас. Второе – оперативная система, которая работает в БИОСе – это ЛОГОС – язык, на котором этот разум может вербально и письменно общаться с представителями себе подобных. И третье – это нравственная программа, которая структурирует и направляет поступки – ТЕОС. У кого-то это религия, у кого-то воспитание, у кого-то научный интеллект. Сюда же можно отнести общее развитие, эрудицию и прочее. Существует много так называемых подпрограмм ТЕОСа. Христианство, ислам, буддизм, научный атеизм, коммунизм… У всех они разные. Но ТЕОС создает некий нравственный программный путь. У кого-то «понятия», у кого-то университетское братство. Одним из ярких примеров является ТЕОС, который описан у Бориса Акунина в «Алмазной колеснице»:
« – Путь Алмазной колесницы учит, что Большой Мир, то есть мир Своей Души, неизмеримо больше Малого Мира, то есть мира человеческих отношений. Спроси сторонника любой религии, кто такой праведник, и ты услышишь: праведник тот, кто жертвует собой ради других людей. На самом же деле жертвовать собой ради других – наихудшее преступление в глазах Будды. Человек рождается, живет и умирает один на один с Богом. Все прочее – лишь видения, созданные Высшей силой, дабы подвергнуть человека испытанию».
Дабы не вводить читателя в заблуждение, уточню – данный отрывок приведен лишь в качестве яркой иллюстрации одного из многих ТЕОСов, но он ни в коем случае не является основополагающим тезисом этой книги.
Фактически, теос и логос являются инструментами передачи информации для третьей сферы, а информация как раз и будет самой средой. Скорость передачи информации в третьей сфере еще более высока, нежели в первых двух сферах. Здесь мы имеем дело с передачей информации в чистом виде. И на сегодняшний день скорость передачи информации только нарастает. В качестве примера приведу следующую цепочку: скорость распространения звука между говорящими людьми, далее изобретение телеграфа, затем телефона, передача информации с помощью радиоволн и, наконец, оптическая передача данных, которая может быть ограничена на сегодня лишь скоростью света. Если гипотетически предположить, что рано или поздно наступит момент, когда логос и теос будут идентичны для всех, тогда человечество едиными усилиями сможет преодолеть любые барьеры. Это будет мощный коллективный разум, для которого не будет препятствий. Фактом написания этой книги, я делаю небольшой, но тем не менее, очень важный шаг в этом направлении.
В биологии понятие соподчиненных термодинамических сфер возникает впервые. Мы с вами убираем дискретность и логически ставим разум в одну биологическую цепочку с управляющими системами первой и второй сферы. Цель создания разума с точки зрения эволюции одна – обеспечение оптимальной жизнедеятельности и через нее достаточной продолжительности жизни, как можно более долгой. То есть, цель разума с точки зрения биологии как науки о живом веществе – это обнаружение и нахождение проблем в передающих средах, мембранах и управляющих центрах первых двух сфер и их своевременное устранение.
Вся наша жизнь – это стремление к ее продлению. Разум, как инструмент эволюции, имеет все возможности это обеспечить. Учение о термодинамических сферах в биологии позволяет определить место разума в природе. Третья сфера объясняет тот факт, что эволюционная причина возникновения разума связана с моментом стабилизации биосистемы человека. Природа добилась практического бессмертия вида за счет использования механизма размножения, но появление и совершенствование человеческого разума со временем позволит повысить устойчивость гармоничного функционирования организма во внешней среде и в конечном итоге обрести бессмертие для обеспечения в будущем выполнения более глобальных задач планетарного масштаба.
Разум – это термодинамическая необходимость живой материи. При длительной фенотипической адаптации рано или поздно многие живые организмы могут стать разумными, потому как в конечном итоге третья сфера необходима для экспансии живой материи во вселенной, а без наличия разума это не представляется возможным. Прогрессивное увеличение объема «разумной материи» – количества высокоразвитых людей с большой продолжительностью жизни сведет к минимуму последствия нарушения передачи информации вследствие каких-либо природных флюктуаций. Ярким примером из техники является компьютерный сервер с RAID-массивом жестких дисков, на каждом из которых полностью дублируется вся информация с целью ее защиты.
В завершение этой главы, я хотел бы привести цитату Ильи Ильича Мечникова, которая кратко отражает всю суть третьей термодинамической сферы:
«Можно совершенно точно утверждать, что не человек намеревается переделать свою физическую природу, а природа сама переделывается, пользуясь силами нервной системы одного из созданных ей высших представителей живой материи».
Принцип самообновления (Синтез и распад)
Мы с вами достаточно подробно разобрали материал о трех термодинамических сферах: гипотетически мы рассматривали их взаимодействие и влияние друг на друга в идеальных условиях. С точки зрения термодинамики биологическая жизнь есть не что иное как открытая система, которая оперирует вдали от термодинамического равновесия. Иными словами, это устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне.
Согласно второму закону термодинамики, в системе есть стремление переходить к беспорядку – это универсальный закон. Если представить существование трех сфер в определенной благоприятной среде, то возникает вопрос, что необходимо для того, чтобы эти три сферы существовали сколь угодно длительное время в оптимальном физическом состоянии высокоэнергетичного организма? Ответ напрашивается сам собой: должен постоянно функционировать некий механизм, который будет компенсировать (уравновешивать) действующее на систему второе начало термодинамики, а именно, необходимо наличие постоянного самообновления организма! Ведь без эффекта самообновления составные части термодинамических сфер и процессы, происходящие в них, будут постоянно приходить в негодность согласно второму закону термодинамики, что приведет к нарастанию хаоса и распаду системы. На практике этот процесс называется старением организма с последующей смертью.
С другой стороны, мы наблюдаем постоянный процесс самообновления клеточного материала и регенерации тканей, вследствие чего организм может поддерживаться в неизменном виде достаточно длительное время. В норме в живой ткани происходит замена отработанных элементов на новые. Необходимо внести ясность, как происходит самообновление организма и каким образом оно зависит от потока вещества и информации.
ПРИМЕР. Представим себе автомобиль, который активно эксплуатируется, но никогда не проходит технического обслуживания. Через определенное время этот автомобиль придет в негодность из-за поломки, связанной с износом той или иной детали. Но, предположим, что у нас есть какая-то машина, которая особенно нам дорога. Например, раритетное авто Элвиса Пресли. И мы не просто проводим регулярное ТО, но и в профилактических целях заменяем комплектующие, раньше, чем они придут в негодность. Проводку, свечи, стартер, амортизаторы, фары и прочее. Такая машина будет ездить вечно. Да, внешне эта машина останется ретро-автомобилем Пресли, но на самом деле это будет уже не та машина, которая была изначально. Принципиально это будет новый автомобиль, который постоянно «на ходу». Ничто не может препятствовать тому, чтобы данная машина ездила вечно, поскольку мы постоянно ее обновляем.
Итак, если на практике, мы можем поддерживать сколь угодно долго в рабочем состоянии дорогой нашему сердцу автомобиль, то теоретически мы также можем поддерживать в оптимальном состоянии наш организм, столько времени, сколько захотим. Нужно честно признать, что гипотетически, при наличии бесперебойного антиэнтропийного принципа самообновления, ничто не мешает человеку жить и 100, и 200, и 500, и 1000 лет! Процесс самообновления организма можно и нужно своевременно корректировать, а для этого надо понимать, как устроена иерархия термодинамических систем организма. На сегодняшний день это один из глобальных научных барьеров, не преодолев который, все мы вынуждены будем умирать в возрасте от шестидесяти до ста лет.
Поскольку в организме постоянно происходят сложные реакции синтеза и восстановления, будет справедливым применить второй закон термодинамики не в отношении целого организма, а конкретно в отношении его структурных элементов – а именно клеток. Износ и умирание берут на себя элементы системы, а не сама система: умирают клетки, но не организм в целом.
Представьте живой организм как большой город, в котором клетки – это его жители, которые умирают и рождаются. В зависимости от того, как будет изменяться популяция жителей, город будет либо развиваться, либо угасать. Либо такой город будет постоянно жить в оптимальном рабочем состоянии, допуская лишь малейшие колебания численности в строго определенных рамках. Такой город будет волнообразно дышать по теории биоритмов Доброборского. Можно привести аналогию в цепочке: вид – человек – клетка. На сегодняшний день природа обеспечила бессмертие вида. Внутри него действует принцип самообновления посредством рождения и умирания структурных единиц, особей вида. Если наложить принцип фрактальности действия физических законов, можно создать инструмент, который позволит обеспечить бесконечно долгое существование организма непосредственно внутри вида. Посредством мысленного эксперимента мы приходим к выводу, что природа уже доказала возможность такого процесса, наша задача лишь найти ключи к осуществлению этого на уровне человеческого организма.
Давайте подробнее остановимся на механизмах синтеза и распада, которые происходят в организме, на том, как и чем эти механизмы регулируются. Для этого к нашей структуре соподчиненных термодинамических сфер мы добавим принцип самообновления форменных элементов. Его работа обусловлена гармоничным взаимодействием механизмов синтеза и распада.
Механизм синтеза
Механизм синтеза обусловлен функционированием стволовых клеток, которые присутствуют во всех органах и тканях и при делении образуют новые элементы. В связи с этим я остановлюсь чуть подробнее, но не вдаваясь в цитологические тонкости (дабы не упустить общую картину), на том пути, который проходит мультипотентная стромальная стволовая клетка (МССК), поэтапно делясь под воздействием факторов роста, других биорегуляторов и изменяющихся условий внешней среды.
Молекулярные механизмы, управляющие дифференцировкой МССК, до сих пор остаются одной из самых неисследованных тем.
Некоторые коллеги предлагают двухстадийную модель дифференциации МССК: от стволовых клеток до клеток, идущих по пути дифференциации. На стадии стволовых клеток происходит асимметричное деление МССК, в результате которого образуются две клетки, одна из которых сохраняет стволовую функцию, а вторая вступает на путь дифференциации в виде плюрипотентного клеточного предшественника. Деление происходит при наличии какого-либо фактора роста, так как ММСК в подавляющем большинстве пребывают в состоянии генетической блокировки. Клетка-предшественник в свою очередь претерпевает целый ряд симметричных делений, образуя при этом внушительный набор трипотентных и бипотентных предшественников.
Сам процесс деления на этой фазе не сопровождается слишком серьёзными фенотипическими изменениями, и поэтому эти этапы объединяют в стадию стволовых клеток.
Когда же бипотентные клетки начинают делиться дальше, появляются унипотентные предшественники, и начинается этап деления клеток, идущих по пути дифференциации, так как на этом этапе унипотентные предшественники приобретают фенотипические характеристики клеток того типа, в который они должны дифференцироваться. Далее унипотентные клетки становятся источниками полностью дифференцированных клеток.
Один из наиболее изученных примеров представляет собой каскад биопроцессов, представляющих собой остеогенез. Асимметричное деление ММСК дает начало раннему остеопредшественнику, который в свою очередь, двигаясь по пути дифференциации, преобразуется в позднего остеопредшественника, преостеобласт, остеобласт и, в конечном итоге, в остеоцит.
Все эти преобразования сопровождаются активацией и дезактивацией целого ряда клеточных биорегуляторов (Cbfa1/Runx2, Msx2, Dlx5, Osx) и экспрессией маркеров остеосинтеза: остеопонтина, коллагена I типа, щелочной фосфатазы, костного сиалопротеина, остеокальцина и других. Нарушение регуляторного контроля на любой стадии этого процесса приводит к задержкам в дифференциации, что в итоге приводит к формированию функционально неполноценных остеобластов.
Гипотеза существования «мезенхимальных стволовых клеток», сформулированная еще в конце ХХ-го столетия, опирается непосредственно на базис знаний, полученных в работах А. Я. Фриденштейна, о преобразовании клональных стромальных клеток костного мозга в скелетные ткани. Но, накопленная на сегодняшний день информация о постнатальных стволовых клетках соединительных тканей, создала предпосылки для появления новой интересной идеи, согласно которой предполагаемые «мезенхимальные стволовые клетки» являются общими прародителями всех негемопоэтических производных мезодермы, а не только скелетных тканей; и, хотя они были обнаружены в костном мозге, источниками МССК могут являться и другие органы и ткани.
Развитие скелетных и мышечных тканей в эмбриогенезе не предполагает наличия общего предшественника и существование постнатальных клеток с одновременно мышечным и скелетным потенциалом и не может быть объяснено с точки зрения биологии развития. К тому же существование различных предшественников мышечных и скелетных тканей подтверждается многими попытками индукции миогенной дифференцировки МССК, большая часть из которых оказались либо неудачными, либо недостаточно эффективными.
Анализ литературы по данной тематике не позволяет понять теоретических основ такой дифференцировки для культур любых МССК. С другой стороны, есть достаточное количество публикаций, в которых показана миогенная дифференцировка МССК. Существенная часть этих работ посвящена формированию из МССК кардиомиоцитов. В частности, для МССК показана направленная дифференцировка в кардиомиобласты ДНК-деметилирующими агентами (5-азацитидин), совместным культивированием и добавлением кардиомиогенных дифференцирующих сред. При культивировании МССК с кардиомиоцитами и добавлением среды, которую продуцируют кардиомиоциты, было показано, что для запуска процесса миогенной дифференцировки необходим прямой контакт клетка-клетка, а вот присутствие цитоиндукторов является недостаточным условием.
Эта идея получила развитие в работах, выполненных на ММСК из жировой ткани. Данные работы убедительно показали, что при обработке культур клеток МССК из костного мозга 5-азацитидином изменяется структура межклеточных взаимодействий. Клетки начинают объединяться, образуя миотубоподобные структуры. Через неделю возникают процессы спонтанного сокращения, а уже через три недели процессы сокращения удивительным образом синхронизируются. Образовавшиеся структуры положительно метятся антителами против миозина, десмина и актина. Спонтанная дифференцировка МССК из немышечных тканей в клетки скелетных мышц в литературе не описана. Это наводит на мысль, что к миодифференцировке способны не все, а лишь определенная часть популяций МССК, для которых миогенный путь развития является наиболее преимущественным.
Тесты in vitro, проводимые при воздействии на культивируемые клетки искусственных гуморальных сигналов, а затем выявление специфических маркеров, не представляют четкой аналогии с гистологической картиной, наблюдаемой в ткани при дифференциации клеток в естественных условиях. С другой стороны, используются способы, цель которых показать спонтанное перепрограммирование судьбы клетки под действием случайного набора факторов, присутствующих в среде. Оба способа изменения программы преобразования клетки являются в равной степени важными биологическими феноменами. Однако они радикально отличаются как теоретически, так и экспериментально.
В каждом случае принципиально важно, является ли вводимый индуктор специфическим химическим сигналом, запускающим перепрограммирование судьбы клетки или эффект от его воздействия связан со спонтанной дифференцировкой из-за далеких от оптимальных ростовых условий опытной среды. Возможность спонтанной дифференцировки является характеристикой данной культуры и представляет собой преобразование клетки в пределах дифферона, а не перепрограммирование ее судьбы.
Принятый ранее взгляд на дифференциацию как на ряд последовательных клеточных изменений на пути к окончательно дифференцированной клетке был подвергнут пересмотру, поскольку стволовые клетки взрослого организма оказались способны в определенных условиях дифференцироваться в клеточные типы, отличные от тех, что встречались в тканях, из которых эти клетки были выделены.
К примеру, было показано, что терминально дифференцированные хондроциты, остеобласты и адипоциты под воздействием внеклеточных стимулов могут превращаться в другие типы мезенхимальных клеток in vitro. В процессе такого видоизменения, дифференцированные клетки теряют фенотипические свойства, характерные для их клеточного типа, и активно пролиферируют, становясь похожими морфологически и функционально на примитивные стволовые клетки. Создавая определенные изменения внешней среды, можно добиться того, что эти дедифференцированные клетки развиваются в другой тип клеток, то есть проходят повторную дифференциацию. Из этого следует, что и предшественники, и дифференцированные клетки сохраняют полипотентность, и в соответствующих условиях (например, в процессе регенерации тканей) могут избирать разные пути дифференциации.
МССК в соответствующих индуцирующих условиях, способны дифференцироваться не только в мезодермальные типы клеток. Они также дают начало производным других зародышевых листков – эктодермы и эндодермы. В последние годы опубликовано несколько работ, демонстрирующих возможность использования МССК из костного мозга в качестве источника получения клеток, вырабатывающих инсулин. Для переключения МССК в предшественники эндодермы с целью последующей их дифференцировки, используются методы культивирования в специальных средах, содержащих индукторы и методы трансфекции генами самых основных факторов транскрипции (Foxa2, Hb9, Pdx1). Полученные таким образом инсулин-продуцирующие клетки полноценно активны и демонстрируют глюкозо-зависимую секрецию инсулина как in vitro так и in vivо.
Опираясь на представленную выше информацию, можно понять, насколько процесс запуска дифференцировки ММСК зависит от внешнего управления разноплановыми биорегуляторами. Открывая на этом пути новые факторы роста и другие регуляторы, мы в будущем надеемся получить ключ к пониманию причин сбоя в стволе дифференцирующих делений МССК, а значит, и к пониманию того, дисбаланс каких факторов (нехватка, переизбыток) приводит, например, к разным типам рака (от низкодифференцированного до высокодифференцированного), а также к возникновению доброкачественных опухолей.
Еще немного гистологии: места в ткани, где постоянно залегают стволовые клетки, делящиеся по мере надобности для дальнейшей дифференциации, называются нишами стволовых клеток. Это микроокружение стволовой клетки, необходимое для её жизнедеятельности и координации её поведения с нуждами организма. По современным представлениям, ниша – это связующее звено контроля и регуляции между клеткой и целостным организмом. Ниша стволовой клетки обеспечивает её факторами, необходимыми для её жизнедеятельности. Благодаря своим анатомическим особенностям, ниша способствует взаимному контролю и обмену информацией между клетками, координирует их действия. Так же, ниша обеспечивает координацию между различными популяциями клеток, регулируя их ориентацию и местоположение в тканевом компартменте, а, следовательно, регулирует морфогенез и функции тканей.
В организме присутствуют как полипотентные стволовые клетки, так и тканеспецифические. Источником полипотентных стволовых клеток является костный мозг. Он состоит из фиброзной стромы и собственно кроветворной ткани. В кроветворной ткани костного мозга выделяют несколько ростков гемопоэза, количество которых увеличивается по мере созревания. Зрелых ростков в красном костном мозге пять: эритроцитарный, гранулоцитарный, лимфоцитарный, моноцитарный и макрофагальный. Тканеспецифичные прогениторные клетки (клетки-предшественницы) – малодифференцированные клетки, которые повсеместно располагаются в различных тканях и органах и отвечают за обновление их клеточной популяции, то есть замещают погибшие клетки. Их главное отличие от других стволовых клеток в том, что клетки-предшественницы могут делиться лишь определённое количество раз, в то время как другие стволовые клетки способны к неограниченному самообновлению. Поэтому периодически клетки-предшественницы тоже погибают, но на их место приходят с кровотоком новые клетки-предшественницы, выработанные при делении и дифференцировке полипотентных стволовых клеток костного мозга. Они попадают в тканевую нишу, закрепляются там и становятся клетками предшественницами.
Все стволовые клетки через определенные биохимические медиаторы (соматотропный гормон, соматомедин и многие др.) воспринимают сигнал автоматической управляющей системы головного мозга о том, насколько организму нужна или не нужна продукция новых элементов в данный момент. И в случае необходимости начинают продуцировать новые элементы путем собственного деления. С возрастом количество стволовых клеток и количество соматомедина в тканях прогрессивно снижается – это доказанный факт, который косвенно подтверждает данную теорию.
Одно из самых значимых исследований современности по изучению продолжительности жизни было проведено японскими учеными из Keio University School of Medicine. Они провели исследование с целью определить гормональные пути, потенциально вовлеченные в энергетический гомеостаз, необходимый для того, чтобы прожить больше ста лет. Было обследовано 252 долгожителя (возрастом 100–108 лет) на протяжении шести лет. Были получены следующие результаты: длительность жизни долгожителей была напрямую связана с количеством предшественника соматостатина – инсулиноподобного фактора роста-1 (соматомедина). Подробнее о роли этих и других биохимических медиаторов мы расскажем в теоретическом разделе (глава о старении организма) и прикладном разделе (глава о роли биорегуляторов).
Основной физической задачей процесса синтеза клеточных элементов является увеличение порядка в организме, то есть синтез обеспечивает осуществление диссипативной функции. Для того, чтобы реализовать математическую модель процесса синтеза, необходимо воспользоваться диссипативной теорией Пригожина: в тех открытых системах, что находятся в сильно неравновесных условиях, могут спонтанно возникать такие типы структур, которые способны к самоорганизации, то есть к переходу от беспорядка, «теплового хаоса», к упорядоченным состояниям. Создатель новой неравновесной термодинамики Илья Романович Пригожин, о котором ранее говорилось в историческом разделе, назвал эти структуры диссипативными, стремясь подчеркнуть парадокс: процесс диссипации (то есть безвозвратных потерь энергии) играет в их возникновении конструктивную роль. Особое значение в этих процессах имеют флуктуации – случайные отклонения некой величины, характеризующей систему из большого числа единиц, от ее среднего значения.
Одним из простейших случаев такой спонтанной самоорганизации является так называемая неустойчивость Бенара. Если мы будем постепенно нагревать снизу не слишком толстый слой вязкой жидкости, то до определенного момента отвод тепла от нижнего слоя к верхнему, обеспечивается одной лишь теплопроводностью, без конвекции. Когда разница температур нижнего и верхнего слоев достигает некоторого порогового значения, система выходит из равновесия и происходит поразительная вещь. В жидкости возникает конвекция, при которой ансамбли из миллионов молекул внезапно, как по команде, приходят в согласованное движение, образуя конвективные ячейки в форме правильных шестиугольников. Это означает, что большинство молекул начинают двигаться с почти одинаковыми скоростями, что противоречит и положениям молекулярно-кинетической теории, и принципу порядка Больцмана из классической термодинамики. Если в классической термодинамике тепловой поток считается источником потерь (диссипации), то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром.
Отметим некоторую особенность: организм не просто поглощает негэнтропию (порядок) из внешней среды, он его намеренно создает, то есть структурирует входящую внешнюю энергию, строго следуя диссипативной теории Пригожина.
Физически основным и самым интересным моментом нелинейной термодинамики является ни что иное как точка бифуркации, то есть момент решения нелинейного уравнения, где диссипативная система может выбрать разные варианты этого решения. Варианты эти будут зависеть от предыдущей истории системы и от состояния (физического и информационного) внешней среды, окружающей систему.
Механизм синтеза как раз и представляет собой такую точку, то есть физически бифуркация выглядит как каскад непрерывных и постоянных делений стволовых клеток (от мультипотентных до дифференцированных клеток ткани).
Только в организме, кроме всего прочего, присутствует строгий автоматический контроль информационного и физического состояния среды, окружающей эти клетки. Это уже называется внешним управлением системой через состояние среды, поэтому сюда, кроме нелинейной термодинамики Пригожина, необходимо применить кибернетические подходы Ляпунова в теории оптимального управления. Только тогда мы увидим, что неопределенность, возникающая в точке бифуркации у Пригожина, в живом организме на самом деле таковой не является, поскольку подчиняется не только внутренней истории самой системы, но и подлежит невероятно четкому и эффективному внешнему управлению через изменение свойств, окружающей данную систему (стволовую клетку) среды.
Механизм распада
Обратимся еще раз к приведенному выше примеру с автомобилем Элвиса, который мы хотим сохранить как можно дольше. Для того, чтобы установить новый агрегат, сначала необходимо удалить изношенный. Так и в живом организме, в соответствии с биофизическим равновесием, наряду с механизмом синтеза, присутствует альтернативный механизм распада, который отвечает за утилизацию отработанного «уставшего» клеточного материала. Механизм распада реализован процессом апоптоза и функционированием фагоцитов – тканеспецифичных макрофагов, которые наряду со стволовыми клетками присутствуют во всех органах и тканях.
Среди фагоцитов отдельно можно выделить две самые многочисленные группы клеток крови. Первая группа – это нейтрофилы. Их задача убирать всяческий «мусор», который образуется в организме или попадает в него извне, то есть они выполняют неспецифическую функцию мусорщиков организма. Вторая группа – это моноциты, назовем их «интеллигентными макрофагами», их основная функция состоит в активном фагоцитозе труднодоступных объектов, поэтому они обладают свойством проникать в ткани через сосудистую стенку, и устранять из них нежелательные клеточные и молекулярные элементы. При невозможности удалить крупные инородные объекты, моноциты окружают такие объекты и изолируют их от тканей организма. Моноциты обладают способностью, проникая в ткани, дифференцироваться в тканеспецифические макрофаги – гистиоциты. Моноцит также интересен тем, что являясь фактически дифференцированной клеткой крови, он тем не менее сохраняет уникальные возможности дополнительной дифференцировки в гистиоциты разных тканей. Именно поэтому механизм распада и обладает свойством дифференциального выбора того, что должно быть подвергнуто разрушению. Основным органом, контролирующим работу фагоцитов, является селезенка. Согласно изречению Галена, селезёнка – орган «полный таинственности». В первую очередь, селезенка интересна тем, что количество стволовых клеток в ней составляет 3–4 клетки на 100 от общего клеточного объема, а это огромное количество! Внутреннее содержимое селезёнки получило название пульпы. В пульпе селезёнки различают две основные зоны: красную и белую.
Белая пульпа селезёнки составляет до 20% объёма органа. Включает в себя лимфатические узелки и периартериальные лимфатические влагалища (муфты). Строму белой пульпы также образует ретикулярная соединительная ткань. Кроме ретикулярных клеток к стромальным элементам относят также некоторые разновидности макрофагов, дендритные и интердигитирующие клетки, которые выполняют функции антигенной презентации. Эта функция позволяет обучать макрофаги, распознавать клетки, и принимать решение о необходимости утилизации той или иной клетки. При признаках старения клетки, ее мутации или онкологического преобразования возникает один и тот же эффект, который отражается на мембране – это эффект снижения метаболизма, то есть эффект снижения энергетической силы самой клетки. Макрофаги определяют этот момент и принимают четкое решение, достойна ли клетка продолжить свое существование или пришла пора ее утилизировать.
Красная пульпа селезёнки составляет 80% объёма органа и выполняет следующие функции:
– Депонирование зрелых форменных элементов крови.
– Контроль состояния и разрушение старых и поврежденных эритроцитов и тромбоцитов.
– Фагоцитоз инородных частиц.
– Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.
Красная пульпа селезёнки включает венозные синусы и селезёночные тяжи Бильроте (часть красной пульпы, расположенной между синусами). В тяжах Бильроте находятся форменные элементы крови, макрофаги, плазматические клетки, лежащие в петлях ретикулярной соединительной ткани. Здесь, по аналогии с мозговыми тяжами лимфатических узлов, заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники которых перемещаются сюда из белой пульпы. В пульпарных тяжах встречаются скопления В– и Т-лимфоцитов, которые могут формировать новые узелки белой пульпы. В красной пульпе задерживаются моноциты, которые дифференцируются в макрофаги. Синусы красной пульпы, расположенные между селезёночными тяжами, представляют собой часть сложной сосудистой системы селезёнки. Эти широкие тонкостенные сосуды неправильной формы выстланы эндотелиальными клетками необычной веретеновидной формы с узкими щелями между ними, через которые в просвет синусов из окружающих тяжей мигрируют форменные элементы.
В физическом смысле механизм распада осуществляет непрерывное производство энтропии в организме и подчиняется теореме Пригожина, которая гласит: в стационарном состоянии производство энтропии внутри термодинамической системы при неизменных внешних параметрах является минимальным и постоянным. Если система не находится в стационарном состоянии, то оно будет изменяться до тех пор, пока скорость производства энтропии или, иначе, диссипативная функция системы не примет наименьшего значения.
Австрийский физик-теоретик Эрвин Шрёдингер объясняет, как живая система экспортирует энтропию, чтобы поддержать свою собственную энтропию на низком уровне:
«Живой организм непрерывно увеличивает свою энтропию, или, иначе, производит положительную энтропию и, таким образом, приближается к опасному состоянию максимальной энтропии, представляющему собой смерть. Он может избежать этого состояния, то есть оставаться живым, только постоянно извлекая из окружающей его среды отрицательную энтропию. Отрицательная энтропия – это то, чем организм питается. Или, чтобы выразить это менее парадоксально, существенно в метаболизме то, что организму удается освобождаться от всей той энтропии, которую он вынужден производить, пока жив».
Отличительной особенностью механизма распада является то, что он состоит из двух частей. Первая – это апоптоз, действующая ныне теория запрограммированной смерти клетки, и вторая часть – фагоцитоз, который был открыт и подробно описан Мечниковым, то есть утилизация продуктов апоптоза. Апоптоз и фагоцитоз являются частями единого механизма распада.
Таким образом, в этой главе мы описали два инструмента системы самообновления организма – механизм синтеза, который отвечает за репликацию клеточного материала и механизм распада, отвечающий за удаление отработанных элементов в организме со свойством дифференциального выбора для оценки элементов. Только совокупное гармоничное взаимодействие этих двух сопряженных механизмов может компенсировать прирост энтропии внутри самой системы. То есть нивелировать отрицательный эффект второго начала термодинамики на живой организм, учитывая, что следствия второго закона термодинамики берут на себя непосредственно форменные элементы, а не организм в целом.
Итак:
– Принцип самообновления, выраженный в природе гармоничной и слаженной работой механизмов синтеза и распада, позволяет перевести действие второго закона термодинамики со всей системы на ее составные части – клетки;
– При появлении дисбаланса между работой механизмов синтеза и распада возникает неизбежный частичный переход влияния второго закона термодинамики с элементов системы непосредственно на организм в целом. Физически этот процесс проявляется старением организма;
– Механизмы синтеза и распада действуют согласно определенным теориям и теоремам, что необходимо учитывать в построении компьютерных моделей принципов функционирования живого организма;
– Оптимальное функционирование механизмов синтеза и распада зависит от состояния среды и количества биорегуляторов в ней, которое определяет управляющая система, находящаяся в стволе головного мозга;
– Механизм распада обладает свойством дифференциального выбора того, что подлежит утилизации, реализованного наличием в организме процесса апоптоза клеток до апоптатических телец, которые впоследствии поглощаются макрофагами;
– В природе принцип самообновления успешно реализован и применен на уровне фактически вечного существования биологических видов, где роль подвергающихся умиранию составных частиц отводится непосредственно телам организмов представителей вида.