Кислород. Молекула, изменившая мир — страница 12 из 89

235U было даже ниже 0,72%. Страшно подумать, что в Африке, только что сбросившей колониальное иго и периодически охватываемой волнами массовых беспорядков, какое-то племя могло выкрасть уран для изготовления ядерной бомбы. Французы немедленно занялись этой проблемой, и вскоре большая группа ученых из Комиссариата по атомной энергии Франции выяснила, в чем дело.

Образцы руд из района Окло хранили явные следы радиоактивного распада, хотя были экстрагированы из нетронутых пластов. Тонны 235U подвергались радиоактивному распаду в нескольких отдельных местах, производя в миллионы раз больше энергии, чем при естественном распаде. По-видимому, эти природные реакции на протяжении миллионов лет поддерживались непрерывным потоком воды, ручьями стекавшей в древние урановые озера. Вода замедляла скорость нейтронов, отражая их обратно в ядро реактора, поэтому она не гасила реакцию, а способствовала радиоактивному распаду. Однако вода делала не только это — она служила еще и защитным клапаном, предотвратившим ядерный взрыв. Как только цепная реакция достигала опасного порога, вода испарялась, и нейтроны рассеивались. Это останавливало цепную реакцию и отключало реактор до восстановления потока. Никаких свидетельств ядерных взрывов в этой местности обнаружено не было. В конечном итоге вся эта система оказалась погребена под слоем осадочных пород, где и оставалась в неизменном виде до прибытия французов. Это следы изобретательности бактерий, обитавших на Земле за 1,8 млрд лет до того, как Энрико Ферми и его группа в Чикаго применили человеческий разум для создания первой атомной бомбы. И следы эти можно воспринимать как завещание, свидетельствующее о возможности безопасного и долгосрочного захоронения ядерных отходов.


А что можно сказать о катастрофических массовых исчезновениях живых существ — о «кислородном холокосте», описанном Линн Маргулис (см. главу 2)? Никаких следов подобных событий в камнях не обнаружено. Скорее наоборот, появление кислорода стимулировало эволюцию новых форм метаболизма и новых ветвей на дереве жизни, о чем в 1960-х гг. заявлял Престон Клауд (глава 2). Но почему кислород так долго не накапливался, хотя цианобактерии выделяли его уже более миллиарда лет? Этот отрезок времени вдвое превосходит по длительности всю современную эру растений и животных (фанерозой) и в десять раз больше промежутка времени, прошедшего с момента исчезновения динозавров. Не указывает ли это на сложность адаптации к ядовитому газу? Мне это кажется маловероятным. Отсрочку можно объяснить по-разному. Например, пока на планете было железо, доминирующее положение могли занимать бактерии, которые питаются железом. Кроме того, цианобактерии могли обитать исключительно на мелководье в строматолитовых сообществах, которые поглощали ровно столько кислорода, сколько производили, поскольку среди них были и нефотосинтезирующие бактерии, дышащие кислородом. Простейшее объяснение заключается в том, что на протяжении миллиарда лет в экосистеме существовало устойчивое равновесие.

Наконец длительный застой был нарушен в результате апокалиптического изменения климата, произошедшего примерно 2,2 или 2,3 млрд лет назад. На Земле наступил первый ледниковый период. Но это был не банальный ледниковый период, сравнимый, например, с плейстоценовым похолоданием, а глобальное оледенение, когда тропические районы покрылись слоем льда километровой толщины. Специалист по палеомагнетизму Джозеф Киршвинк из Калифорнийского технологического института придумал название для этого явления — «Земля-снежок». Мы не знаем, почему так внезапно пришел конец спокойному климату докембрийского периода. Геохимик Джеймс Кастинг из НАСА считает, что причиной похолодания стал сам кислород. Накапливавшийся в атмосфере кислород мог взаимодействовать с метаном, который в большом количестве производили бактерии, и удалять этот важный парниковый газ из атмосферы. Ослабление парникового эффекта стало причиной понижения температуры, и Земля погрузилась в ледниковый период. Эту идею поддерживал и Джеймс Лавлок, который писал о важной роли метаногенных бактерий в книгах о Гее, но пока у нас нет веских доказательств этой гипотезы.

Итак, мы не знаем причин, но нам совершенно точно известно, что примерно 2,3 млрд лет назад на Земле начался долгий ледниковый период, длившийся 35 млн лет. А после него начался период повышенной тектонической активности, приведший к значительному континентальному рифтингу и подъему горных массивов, сравнимых по размеру с Андами.

Джозеф Киршвинк — один из самых активных сторонников теории «Земля-снежок» и ее самый серьезный знаток. Он считает, что камни и каменная крошка, оставшиеся после окончательного таяния ледников, наполнили океаны минералами и питательными веществами, которые стимулировали резкий подъем численности цианобактерий и увеличение содержания кислорода в воздухе. В качестве доказательства Киршвинк и его коллеги указывают на гигантские отложения марганцевой руды в пустыне Калахари на юге Африки, возникшие как раз после окончания оледенения. Месторождение в Калахари содержит около 13,5 млрд тонн марганцевой руды (примерно 4 млрд тони марганца); это самый крупный в мире источник данного элемента.

Марганец окисляется не так быстро, как железо, поэтому оксиды марганца вряд ли начали осаждаться из океанов до тех пор, пока не было окислено все растворенное железо. Действительно, залежи марганца в Калахари располагаются выше слоя гематита — наиболее сильно окисленной железной руды (месторождение у города Хотазел). Для столь полного осаждения железа и марганца, по-видимому, требовалось дополнительное количество кислорода. В наше время попадание в воду марганца практически всегда вызывает активный рост водорослей или цианобактерий, которые за короткое время могут генерировать очень большое количество кислорода. Киршвинк считает, что питательные вещества из оттаявшей Земли стимулировали рост цианобактерий, который вызвал быстрое окисление поверхности океанов и, в конечном итоге, накопление свободного кислорода в атмосфере.

Все дело в скорости изменений. Если эта скорость не превышает буферной емкости среды, система в целом способна сохранить химическое равновесие. Однако жизнь не стремится к устойчивому равновесию, скорее ее можно определить как состояние динамического неравновесия. В главе 2 мы обсуждали, что Земля избежала печальной судьбы Марса благодаря появлению в атмосфере кислорода, выделяющегося при фотосинтезе, что удержало водород и не позволило исчезнуть океанам. Однако после этого на Земле вновь установилось затишье, во время которого производимый цианобактериями кислород расходовался другими бактериями для дыхания, а также в реакциях с горными породами, растворенными минеральными веществами и газами. Это новое равновесие сохранялось примерно от 3,5 до 2,3 млрд лет назад — примерно четвертую часть всей истории Земли. Жизнь была спасена от этого бесконечного экологического равновесия между железолюбивыми бактериями, строматолитами и цианобактериями внезапным шоком, вызванным оледенением и встряхнувшим Землю от дремоты путем инъекции кислорода.


События следующего миллиарда лет подтверждают такой сценарий. На первый взгляд, на Земле не происходило никаких серьезных изменений. После образования полосатых железных гор, сильнейших перемен климата, тектонической активности, окисления поверхности океана и ржавления континентов Земля, казалось бы, вновь застыла в состоянии равновесия. Если судить по изотопным подписям и составу палеопочв, содержание кислорода в атмосфере в этот период сохранялось на уровне от 5 до 18% по отношению к современному уровню, что более чем достаточно для формирования аэробного метаболизма у наших предков — эукариотических клеток. Повышение содержания кислорода привело к увеличению концентрации сульфатов, нитратов и фосфатов в океанах, что открыло новые возможности для роста. В относящихся к этому периоду окаменелостях уже встречаются простые многоклеточные водоросли и хорошо сохранившиеся эукариотические клетки, что указывает на расширение генетического разнообразия.

Успешная эволюция наших эукариотических предшественников может быть напрямую связана с повышением уровня кислорода в атмосфере. В главе 8 мы поговорим о том, что эукариоты представляют собой комплекс множества разнообразных компонентов. Каждая клетка содержит сотни или даже тысячи микроскопических органов (органелл), выполняющих специфические функции, такие как дыхание или фотосинтез. Современную жизнь невозможно представить без этих органелл, но все они имеют разное происхождение. Некоторые из них появились независимым путем. Например, митохондрии возникли из штамма пурпурных бактерий. Во всех без исключения эукариотических клетках, включая растения и водоросли, процесс дыхания осуществляется в митохондриях. Фотосинтез в клетках растений и водорослей происходит в хлоропластах, которые образовались из цианобактерий.

Считается, что эукариотические клетки возникли из более примитивных предшественников именно в этот долгий период стабильности, начавшийся 2 млрд лет назад. Мелкие бактерии каким-то образом попали внутрь примитивных эукариот[16] и смогли сохраниться там, как Иона в животе у кита. В результате эукариоты стали представлять собой сообщество клеток внутри других клеток[17]. В этой патовой ситуации оформилось торговое соглашение — продукты метаболизма в обмен на кров. В конечном итоге тесные симбиотические отношения оказались столь успешными, что теперь в интернализованных (включенных внутрь эукариотических клеток) бактериях практически невозможно опознать свободноживущие клетки. Однако в этом долгосрочном сотрудничестве кроется интересный парадокс. Давайте поговорим об этом на примере митохондрий.

Представьте себе: 2 млрд лет назад маленькая клетка пурпурной бактерии оказалась захвачена более крупной клеткой, но не была ею переварена. Сейчас для нас не важно, являлась ли крупная клетка хищницей, или маленькая клетка — инфицирующим агентом. Тот факт, что одна клетка осталась жить внутри другой, говорит о том, что большого вреда они друг другу не причин