литры[2]. При нагревании до температуры выше 336 °С селитра разлагается, высвобождая кислород, который алхимики называли воздушной селитрой. Сендивогий считал, что обнаружил Эликсир Жизни, «без которого ни один смертный не может жить и ничто в мире не растет и не производится». Но Сендивогий не ограничился теорией. По-видимому, он научился получать кислород путем нагревания селитры и вполне мог передать свои знания датскому изобретателю и алхимику Корнелиусу Дреббелю — забытому герою науки эпохи Возрождения.
В 1621 г. Дреббель блестящим образом продемонстрировал практическое значение кислорода. К тому времени он уже создал для короля Англии Якова I вечный двигатель, заряжающийся от солнечного света, различные холодильники и автоматы, а теперь сконструировал первую в мире подводную лодку. Яков в окружении тысяч подданных расположился на берегу Темзы, чтобы посмотреть на первое путешествие корабля длиной в десять миль — из Вестминстера до Гринвича. Управляемая двенадцатью гребцами деревянная субмарина провела под водой около трех часов. Интереснее всего, как Дреббелю удалось осуществлять снабжение гребцов свежим воздухом на протяжении всего этого времени. По свидетельствам очевидцев, которые позднее (в 1660 г.) обсуждал великий химик Роберт Бойль, для замены «жизненно важной части воздуха» Дреббель использовал бутыль жидкости (по другим данным, это был газ):
«Дреббель считал, что для дыхания нужен не весь воздух, а лишь некая его „душа“, квинтэссенция воздуха, при исчерпании которой весь остальной каркас (как я [курсив Бойля. — Примеч. авт.] позволю себе выразиться) воздуха не способен поддерживать горящее в сердце пламя жизни... Поэтому время от времени он [Дреббель], осознавая, что лучшая и чистейшая часть воздуха исчерпана... приоткрывал сосуд с жидкостью, быстро заполняя испорченный воздух недостающей жизненно важной составляющей, так что он опять становился пригодным для дыхания».
Вероятно, Дреббель смог наполнить бутыли кислородом путем нагревания селитры, следуя инструкциям своего наставника Сендивогия. Совершенно очевидно, что Сендивогий, Дреббель и Бойль осознавали, что воздух представляет собой смесь газов, одним из которых является жизненно важный газ кислород. Они понимали, что при горении или дыхании в ограниченном пространстве из воздуха удаляется содержащийся в нем кислород. Бойль писал о дыхании и горении в одинаковых терминах («горящее в сердце пламя жизни»), хотя, конечно, не осознавал, насколько похожими являются эти два процесса. Современник и коллега Бойля по Лондонскому королевскому обществу Джон Мейоу продвинулся дальше. Он показал, что красный цвет крови объясняется тем, что при дыхании в легкие попадает воздушная селитра (кислород). Он считал, что воздушная селитра является нормальной составляющей воздуха, из которого она «становится пищей для огня, а также попадает в кровь животных при дыхании... Не сам воздух, а лишь его наиболее активная и тонкая часть является пищей для огня». Таким образом, несмотря на архаичность языка Мейоу, в его идеях еще в 1674 г. отразилось совершенно современное представление о кислороде.
На таком научном базисе приверженность Пристли теории флогистона (идеи о том, что при горении в воздух выделяется невидимое вещество) через сто лет кажется комичной, но он был совсем не одинок. Идея флогистона на добрую часть столетия затормозила исследования состава воздуха. Для объяснения экспериментальных результатов флогистону иногда приписывали положительный вес, иногда отрицательный, а иногда приходилось признать, что он не имеет веса. Даже те, кто считает Пристли первооткрывателем кислорода, признают, что приверженность этой теории ослепила его и не позволила в полной мере осознать значение сделанного открытия[3]. Однако в другом отношении Пристли оказался на удивление прозорливым: он предсказал не только целебные свойства кислорода (который он упорно называл лишенным флогистона воздухом), но и его потенциальную опасность. В трактате «Эксперименты и наблюдения над различными типами воздуха», опубликованном в 1775 г., он обсуждал собственный опыт вдыхания чистого кислорода:
«Ощущения от его вдыхания для моих легких не отличались в значительной степени от вдыхания обычного воздуха, но после этого на протяжении некоторого времени я чувствовал в груди особую легкость. Возможно, когда-нибудь этот очищенный воздух сможет стать предметом роскоши... Наблюдая за большой мощью и живостью пламени свечи, горящей в этом чистом воздухе, приходишь к выводу, что он может оказаться особенно полезным для легких в определенных болезненных состояниях, когда обычного воздуха не хватает, чтобы достаточно быстро уносить смрад. Однако на основании этих экспериментов, возможно, следует также заключить, что хотя этот чистый, избавленный от флогистона воздуx [кислород] может быть очень полезен в медицинских целях, он может не подходить нам в обычном, здоровом состоянии; как свеча, которая гораздо быстрее горит в этом лишенном флогистона воздухе, так и мы, как бы это выразиться, в этом чистом воздухе можем проживать слишком быстро [курсив Пристли. — Примеч.авт.] и силы живого cущества могут очень быстро подходить к концу. Моралист сказал бы, что нам гораздо больше походит тот воздух, который создала для нас природа».
Тот, кто вдыхал чистый кислород в «кислородном баре», может посмеяться над причудливой аналогией Пристли и его моральными опасениями, но мало кто из исследователей не согласится с сутью этих замечаний. Удивительно, но в словах Пристли содержится первое (насколько я знаю) предположение о том, что кислород ускоряет старение. Это предостережение не было замечено современниками ученого, которые немедленно устремились использовать лечебный потенциал кислорода. Несмотря на имевшиеся подозрения, на протяжении следующих ста лет на токсичность кислорода не обращали внимания.
Первым человеком, который стал широко использовать чистый кислород в терапевтических целях, был Томас Беддоуз. В 1798 г. в Бристоле Беддоуз основал Пневматический институт ингаляционной терапии, в котором работал выдающийся молодой химик Гемпфри Дэви. Оба любили лечить больных, страдавших незлечимыми на тот момент недугами. К сожалению, они были чрезмерно самонадеянны при выборе пациентов, и их методы редко оказывались успешными. Хуже того, содержавшиеся в газовых смесях примеси часто вызывали воспаление легких (любопытно, что чистый кислород тоже может вызывать воспаление легких). Из-за этих сложностей и нестабильности поставок кислорода институт закрыл свои двери в 1802 г. Позже Дэви описывал эту работу как «мечты непризнанного гения, который не смог довести до конца ни одного эксперимента».
Такая череда надежд и разочарований длилась на протяжении большей части XIX в. Из-за примесей в газовых смесях и различия в способах назначения кислорода клинический консенсус так и не был достигнут. Иногда пациент дышал кислородом напрямую через маску или мешок, иногда газ пропускали через бадью с водой, расположенную у постели больного, а воздух разгоняли по комнате с помощью вентилятора. Поражение такого экспериментального подхода было неизбежным. При столь разных способах назначения и отсутствии системного анализа не приходится удивляться противоречивым результатам. Адвокаты кислородной терапии заявляли о чудодейственных исцелениях (что могло быть справедливым, например, при воспалении легких), но сторонники традиционных методов лечения по большей части не выражали энтузиазма и считали, что положительная динамика была временной, поверхностной или мнимой. Отсутствие консенсуса еще более усугубляли мошенники и шарлатаны, заявлявшие доверчивой публике о существовании секрета «сложного кислорода». Некоторые из этих рекламных заявлений 1880-х гг. удивительным образом напоминают заявления современных сторонников лечения «активным кислородом». К счастью, тогда, как и теперь, победу одержали врачи, практикующие честную кислородную терапию.
Интерес врачей к кислородной терапии возник в результате публикации ряда странных сообщений о том, что повышенное давление кислорода может влиять на здоровье. Например, пациенты с воспалением легких, живущие в высокогорной местности, например в Мехико, скорее выздоравливали, если переезжали вниз, в долину, где давление кислорода выше. Аналогичным образом, пациенты с сердечно-сосудистыми заболеваниями лучше себя чувствуют на уровне моря, чем в горах. Заинтересованный этими сообщениями американский врач Орвел Каннигем рассудил, что еще более высокое давление может усилить положительный эффект. В результате серии успешных экспериментов при финансовой помощи благодарных пациентов в 1928 г. в Кливленде (Огайо) он создал самую большую из когда-либо существовавших барокамер — полый стальной шар диаметром 20 м и высотой пять этажей, давление в котором было вдвое выше атмосферного давления на уровне моря (этот проект обошелся примерно в миллион долларов).
Каннигем превратил свой стальной шар в подобие отеля — с курительными комнатами, рестораном, богатым убранством и индивидуальными номерами. К сожалению, он использовал не кислород, а сжатый воздух, так что давление кислорода в помещении было таким же, как при подаче кислорода через маску, только стоимость лечения была значительно выше. Хуже того, Каннигем лечил больных не с воспалением легких или сердечно-сосудистыми заболеваниями, которым такая процедура могла бы помочь, а приглашал пациентов с диабетом, пернициозной анемией и раком, исходя из ошибочной идеи, что все эти состояния вызваны анаэробными (боящимися кислорода) бактериями. Как цели, так и результаты подобной терапии не удовлетворили Американскую медицинскую ассоциацию, которая назвала эту схему лечения «гораздо более интересной с экономической, чем с медицинской точки зрения». Стальной шар простоял еще несколько лет, а в 1942 г. был пущен на металлолом и использован для военных целей.