сленную цепь биохимических реакций. Эта энергозатратная цепь реакций останавливает рост растения, как сомнительная репутация политика — его продвижение по ступеням власти.
Скорость фотодыхания увеличивается с ростом температуры и концентрации кислорода. Это означает, что в жарком климате и при обилии кислорода рост растений останавливается. Даже при нормальном содержании кислорода в воздухе в тропических зонах это бессмысленное растрачивание ресурсов может затормозить рост растений на 40%. Это явление сказывается на производительности сельского хозяйства, xотя негативный эффект в какой-то степени сглаживается благодаря большому количеству осадков, плодородию почв и продолжительности сельскохозяйственного сезона.
Несмотря на кажущуюся бессмысленность, фотодыхание — универсальный процесс, происходящий во всех растениях, хотя некоторые из них изобрели обходные пути, позволяющие снизить пагубные последствия[26]. По каким-то причинам эволюция сохранила этот механизм. Другими словами, он для чего-то нужен, иначе он бы исчез в жестокой борьбе за выживание. Это предположение подтверждается многочисленными неудачными попытками вывести растения, в которых механизм фотодыхания не реализуется. Часто целью подобных экспериментов было повышение урожайности сельскохозяйственных культур в развивающихся странах. Удивительно, но такие генетически модифицированные растения не могут жить в нормальных условиях и выживают только в атмосфере с высоким содержанием углекислого газа и низким содержанием кислорода. По-видимому, фотодыхание в какой-то степени защищает растение от токсичного воздействия кислорода. Это объясняет, почему растения могут обойтись без фотодыхания при низком содержании кислорода в воздухе, но не в атмосфере с нормальной или повышенной его концентрацией. Для нас важно, что фотодыхание останавливает рост растений при высоком содержании кислорода в воздухе.
Фотодыхание настолько распространенный процесс, что оно вполне может быть одним из основных факторов, стабилизирующих содержание кислорода в атмосфере. Если уровень кислорода повышается, сразу возрастает интенсивность фотодыхания, что приводит к остановке роста растений. Низкорослые растения производят меньше кислорода, способствуя снижению концентрации кислорода до прежнего уровня. Интересно, что эта гипотеза не подразумевает постоянства скорости захоронения органического материала. Напротив. В принципе, скорость захоронения органических веществ связана со скоростью роста растений: нет роста — нет захоронения органического углерода, и наоборот. Однако остается эмпирический вопрос: может ли на самом деле фотодыхание определять концентрацию кислорода в воздухе и скорость захоронения органического материала?
Точного ответа мы пока не знаем, но данную гипотезу можно проверить экспериментальным путем. Результаты некоторых исследований показывают, что фотодыхание, безусловно, играет важную роль в поддержании постоянной концентрации кислорода в атмосфере, но одного этого механизма недостаточно. К такому выводу пришли Дэвид Бирлинг и его коллеги из Университета Шеффилда, опубликовавшие результаты исследований в журнале Philosophical Transactions of the Royal Society в 1998 г. Они измеряли скорость роста растений при различной концентрации кислорода в диапазоне от 21 до 35%. В среднем при 25 °C в среде с высоким содержанием кислорода растения росли на 18% медленнее, чем в обычной атмосфере, что подтверждало влияние кислорода на скорость роста растений. Однако величина эффекта для разных растений различалась: более древние группы растений держались гораздо лучше их современных родственников. Растения, появившиеся во время каменноугольного периода, такие как папоротники, гинкго и цикадовые (напоминающие пальму вечнозеленые растения, но не с орехами, а с шишками), менее чувствительны к повышению концентрации кислорода, чем их более молодые в эволюционном плане родственники — покрытосеменные (самая обширная группа современных растений, к которой относятся листопадные деревья и кусты, основные сельскохозяйственные культуры и все другие травянистые культуры и цветы). Кроме того, более древние растения, по-видимому, способны адаптироваться к новым условиям путем изменения структуры листьев. В частности, у них увеличивалось количество устьиц (пор в листьях, через которые осуществляется газообмен), что способствовало более активному накоплению углекислого газа в листьях.
Интересно, что при увеличении концентрации углекислого газа в воздухе в два раза (от 300 до 600 ррm) рост растений не замедлялся, а иногда и усиливался. Поскольку обычно содержание углекислого газа падает при повышении содержания кислорода, большинство геологов соглашаются с тем, что уровень углекислого газа снизился с максимального значения 3000 ppm в девонском периоде (385 млн лет назад) до минимального значения 300 ррm в конце пермского периода (245 млн лет назад) (рис. 5). Таким образом, на протяжении каменноугольного периода содержание углекислого газа в атмосфере могло быть выше, чем сейчас. В целом группа Шеффилда пришла к выводу, что высокая концентрация кислорода в воздухе во время каменноугольного и в начале пермского периода могла привести лишь к замедлению роста растений в тропических регионах.
Вполне возможно, что активность метаногенных бактерий, наличие питательных веществ и фотодыхание корректируют уровень кислорода в нормальных условиях, но, скорее всего, они лишь притупляли значительные колебания уровня кислорода в конце каменноугольного и начале пермского периода, предсказанные на основании высокой скорости захоронения углерода. Пожалуй, пришло время подробнее обсудить события, происходившие на протяжении 70 млн лет — от 330 до 260 млн лет назад. В этот период, составляющий менее 2% истории Земли, образовалось 90% всех резервов ископаемого угля. Это означает, что скорость захоронения углерода в этот период была в 600 раз выше, чем в другие геологические эпохи. Конечно, бóльшая часть органического материала не превратилась в уголь (см. главу 2), но системный анализ органической составляющей осадочных пород во всем мире подтверждает, что общее количество органического материала, захороненного во время каменноугольного и в начале пермского периода, намного больше, чем в любую другую эпоху, включая современность[27].
Уникальные события обычно лучше всего объясняются необычным стечением обстоятельств. Наиболее правдоподобное объяснение высокой скорости захоронения углерода на протяжении каменноугольного и в начале мелового периода заключается в совпадении геологических, климатических и биологических факторов. Важнейшую роль, вероятно, сыграли два фактора. Во-первых, незадолго до рассматриваемого нами периода образовался единый низколежащий суперконтинент Пангея. Обширные поймы с влажным климатом создали оптимальную среду для возникновения угольных болот. Во-вторых, появление крупных древесных растений — первых деревьев — около 375 млн лет назад способствовало распространению растительности на возвышенностях, в болотах и на побережьях. Структурный каркас древесных растений состоит из лигнина. Даже современные бактерии с трудом перерабатывают лигнин, но во время каменноугольного и пермского периодов древесные растения наверняка производили намного больше лигнина, чем могли расщепить бактерии.
Таким образом, высокая скорость образования угля во время каменноугольного и пермского периодов объясняется очень большой разницей между скоростями синтеза и расщепления лигнина, а также практически идеальными условиями сохранения органического материала. Мы не знаем механизма, который мог бы остановить рост концентрации кислорода в таких условиях, так что нам остается заключить, что уровень кислорода в это время должен был увеличиваться и, возможно, весьма существенно. Как и М. Г. Руттена, меня вполне удовлетворяет такая линия рассуждений, но остается открытым вопрос, как сильно выросла концентрация кислорода.
Баланс фотосинтеза таков, что при захоронении определенного количества органического углерода в воздухе сохраняется фиксированное количество кислорода (глава 2). В принципе, чтобы рассчитать содержание кислорода в воздухе, нам нужно знать только количество захороненной в прошлом органической материи. Из этой величины нужно вычесть количество захороненного вещества, которое впоследствии подверглось эрозии и вернулось в атмосферу в виде углекислого газа. При расчете баланса мы не делаем различия между углеродом, вернувшимся в атмосферу в результате эрозии, и углеродом, окисленным для получения энергии и немедленно вернувшимся в воздух в виде углекислого газа. Однако важно иметь в виду разницу скоростей этих процессов. Уголь, который сейчас добывают и сжигают, сформировался во время каменноугольного периода и 300 млн лет пролежал в земле, и его захоронение способствовало росту концентрации кислорода в атмосфере в то время (а его сжигание помогает снижению содержания кислорода сегодня — хотя всего на 2 ppm в год при базовом уровне 210 000 ррm).
Возможно, вам покажется, что оценить скорость захоронения углерода и скорость эрозии в отдаленном прошлом — задача невыполнимая, однако геохимик Роберт Бернер из Йельского университета и его бывший аспирант Дональд Кенфилд с помощью некоторых приближений смогли определить несколько важных параметров. Они считают, что, поскольку основная масса органического вещества откладывается в виде угольных пластов, наносных отложений в устьях рек и на континентальном шельфе, мы можем не учитывать процесс образования горных пород в глубинах океана. Таким образом, задача формулируется прямо и скучно: нужно определить состав различных континентальных осадочных пород, что делается с помощью любой подробной геологической карты. Содержание органического вещества в этих породах можно измерить напрямую. Труднее всего рассчитать скорость эрозии. Если предположить, что старые породы полностью уничтожены в результате эрозии и метаморфизма, тогда выходит, что более молодые породы, расположенные ближе к поверхности, с большей вероятностью подвергаются эрозии сейчас. Кроме того, необходимо учесть локализацию исходного захоронения: это могла быть местность с хорошим потенциалом для сохранения материала, как в угольных болотах (многочисленных в каменноугольном периоде) или зоны с высокой скоростью эрозии типа наносных равнин (более распространенных в пермском периоде).