Кислород. Молекула, изменившая мир — страница 33 из 89

, и именно поэтому фотосинтез возможен. Эта структура состоит из белков и называется кислород-выделяющим, или водорасщепляющим, комплексом (ферментом).Вода прочно связывается в этом белковом комплексе, и из нее по одному выделяются электроны. Но комплекс этот необычный. В нем есть старый, как мир, секрет. Он возвращает нас больше чем на 2,7 млрд лет назад, в те времена, когда еще не существовало никакого фотосинтеза и в воздухе не было кислорода. Это секретный ключ, открывший дверь и впустивший на Землю жизнь. Без него наша планета осталась бы такой же бесплодной, как Марс.

Структура кислород-выделяющего комплекса (КВК) очень похожа на структуру антиоксидантного фермента каталазы. По виду КВК можно сказать, что он образовался из двух связанных между собой молекул каталазы[42]. Если это действительно так, значит, каталаза появилась раньше КВК. В таком случае хронология событий могла быть следующей. Каталаза возникла рано, когда на Земле еще отсутствовал кислород. В какой-то момент две молекулы каталазы оказались связанными друг с другом и образовали кислород-выделяющий комплекс, в котором расщепление воды происходило безопасным образом. Наличие этой системы позволило реализовать оксигенный фотосинтез, и в результате атмосфера начала пополняться кислородом. Жизнь подверглась серьезному окислительному стрессу. К счастью, она уже умела защищаться, поскольку уже создала как минимум один антиоксидантный фермент — каталазу. Кажется, все складно? Но подождите минуточку. Каталаза возникла до фотосинтеза, когда в атмосфере еще отсутствовал кислород, но окислительный стресс уже был. Возможно ли такое? Чтобы ответить на этот вопрос, нужно понять, как работает каталаза.

Каталаза отвечает за устранение пероксида водорода, который, как мы обсудили в главе 6, является потенциальным убийцей бактерий. Практически все аэробные организмы имеют каталазу, и даже некоторые анаэробные бактерии, которые боятся кислорода как чумы, синтезируют некоторое количество этого фермента. Каталаза работает невероятно быстро. Без каталазы и без железа пероксид водорода расщепляется на воду и кислород за несколько недель. Растворенное железо катализирует расщепление пероксида водорода до гидроксильных радикалов и, в конечном итоге, до воды в соответствии с реакцией Фентона (см. главу 6). Если железо включено в молекулу пигмента, такого как гем в составе гемоглобина, скорость расщепления пероксида водорода возрастает в 1000 раз. Если гем включается в белок, как в случае каталазы, пероксид водорода напрямую и безопасно расщепляется на воду и кислород, а скорость этого процесса примерно в 100 млн раз выше, чем в присутствии только железа.

Известно несколько типов каталаз. В большинстве клеток животных наличествует форма с четырьмя гемовыми группами в центре. Некоторые микробы имеют другую форму каталазы, содержащую не железо, а марганец. Несмотря на различия в структуре, оба фермента работают очень быстро, и оба справедливо называются каталазами, поскольку катализируют одну и ту же реакцию — взаимодействие двух молекул пероксида водорода с образованием кислорода и воды:


2О2 → 2Н2О + О2

Эта простая реакция может многое рассказать о том, какие условия существовали на Земле 3,5 млрд лет назад. Точно такая же реакция происходит между двумя молекулами пероксида водорода и без катализатора, только в присутствии каталазы она протекает в 100 млн раз быстрее. Участие в реакции двух молекул пероксида водорода означает, что действие каталазы особенно эффективно при высокой концентрации пероксида водорода, когда существует большая вероятность столкновения двух молекул. Таким образом, каталаза быстро снижает высокую концентрацию пероксида водорода, но слабо справляется с уничтожением следовых количеств пероксида водорода или поддержанием его стабильно низкой концентрации.

Большинство современных аэробных организмов синтезирует ферменты из группы пероксидаз, которые расщепляют пероксид водорода в низкой концентрации. Эти ферменты действуют совершенно иначе. Они не соединяют между собой две молекулы пероксида водорода, а с помощью антиоксидантов, таких как витамин С, превращают единственную молекулу пероксида водорода в две молекулы воды без выделения кислорода. Большинство аэробных клеток содержат ферменты обоих типов и расщепляют пероксид водорода двумя путями. Каталаза используется для расщепления основного количества пероксида водорода, а пероксидаза ликвидирует остатки.

Можно догадаться, что каталаза работает при значительных колебаниях концентрации субстрата. Это высокоспециализированный фермент: он действует лишь на одну мишень и с очень высокой скоростью. Такая невероятная эффективность, конечно же, неслучайна. Представьте себе богослова XVIII в. Уильяма Палея, обнаружившего не свои знаменитые часы, а ядерный реактор и пытающегося объяснить их устройствo не гением Мастера, а случайным стечением обстоятельств[43].

В строении и происхождении каталазы нет ничего случайного. Если этот фермент существовал на Земле до появления фотосинтеза, значит, на Земле был и пероксид водорода, причем в изобилии. Скажем прямо, это заявление противоречит интуиции. Действительно ли на первозданной Земле могло быть столько пероксида водорода, что это стимулировало эволюцию каталазы?

Как мы уже знаем (см. главу 6), в марсианской почве содержится много пероксидов железа. Однако это ничего не говорит о том, с какой скоростью эти соединения появлялись на первозданной Земле. Конечно, они возникали (Земля расположена ближе к Солнцу, следовательно, ей достается больше ультрафиолетовых лучей), но количество пероксида водорода определяется соотношением скоростей его образования и распада, которое, в свою очередь, зависит от условий в атмосфере и в океане. Хотя существование каталазы указывает на обилие пероксида водорода, окончательные выводы делать рано. К счастью, у нас есть и другие данные, и они не только подтверждают идею о том, что фотосинтез возник как реакция на окислительный стресс, но и объясняют некоторые застарелые парадоксы.


Один из ведущих специалистов по атмосферным процессам Джеймс Кастинг (теперь из Университета Пенсильвании) в 1980-х гг. работал в Научно-исследовательском центре Эймса (Калифорния) в составе НАСА. Он пытался ответить на вопрос, сколько пероксида водорода было в атмосфере Земли на ранних этапах ее существования. Но его интересовала не эволюция фотосинтеза, а временные этапы изменения концентрации кислорода в атмосфере.

Как мы обсуждали в главе 3, в некотором приближении мерой концентрации кислорода в воздухе может служить степень вымывания железа из ископаемых почв. Поскольку в бескислородной среде железо находится в растворимой форме, оно вымывается из почвы дождевой водой. По мере накопления кислорода железо превращается в нерастворимую ржавчину, которая не вымывается. Поэтому теоретически содержание железа в ископаемых почвах отражает содержание кислорода в атмосфере. Из анализа ископаемых почв следует, что кислород в атмосфере начал накапливаться более 3 млрд лет назад (задолго до значительного повышения его концентрации 2 млрд лет назад). И это не соответствует результатам, полученным при анализе изотопных подписей серы (см. главу 3) или других образцов, таких как полосатые железные горы, красноцветные отложения и урановые руды. Кастинг заинтересовался причиной этого несоответствия.

В ранних исследованиях ископаемых почв постулировалось, что самым сильным окислителем, растворенным в дождевой воде, всегда был сам кислород. Кастинг решил проверить это утверждение и предположил, что до появления кислорода в атмосфере самым сильным окислителем в дождевой воде был пероксид водорода. В подробной теоретической статье, написанной совместно с Генрихом Холландом и Джозефом Пинто из Гарварда, он привел расчет скорости расщепления воды под действием ультрафиолетового излучения в различных условиях. Кроме того, он учитывал растворимость продуктов распада (таких как пероксид водорода) в каплях дождя и определял их вероятную стационарную концентрацию в дождевой воде и в озерах.

По расчетам Кастинга выходило, что в наиболее вероятных условиях, существовавших на Земле 3,5 млрд лет назад (высокая концентрация углекислого газа, менее 0,1% современного содержания кислорода и отсутствие озонового слоя), скорость прироста концентрации пероксида водорода (рассчитанная по разнице скоростей образования и удаления в химических реакциях или под действием дождевой воды) должна была составлять 100 млрд молекул в секунду на квадратный сантиметр. Цифра эта кажется невероятной, но давайте просто запомним, что пероксида водорода в атмосфере было очень много. Говорят ведь, что в одном стакане воды больше молекул, чем стаканов воды во всех океанах. Поэтому, думаю, вы не очень сильно удивитесь, если узнаете, что масса 100 млрд молекул пероксида водорода составляет около 56 × 10-12 г[44]. Чтобы как-то оценить эти значения, Кастинг рассчитал, что растворенный пероксид водорода (который растворяется гораздо лучше кислорода) составляет от 1 до 6% общего содержания окислителей в современной дождевой воде. Нет причин думать, что 3 млрд лет назад его содержание было ниже, скорее наоборот, поскольку интенсивность ультрафиолетового излучения на поверхности Земли была в 30 раз выше.

Такое высокое содержание пероксида водорода должно было вызывать у первых клеток окислительный стресс. Причем уровень стресса оказался бы особенно высок по той причине, что пероксид водорода гораздо активнее кислорода. В частности, он значительно быстрее реагирует с растворенным железом с образованием гидроксильных радикалов, чем кислород. В современных океанах с высоким содержанием кислорода активность пероксида водорода ограничивается малой доступностью растворенного железа (которое уже давно прореагировало с кислородом и осело в виде полосатых отложений), но в начале докембрийского периода океаны содержали очень много растворенного железа, так что пероксид водорода должен был непрерывно реагировать с ним и производить гидроксильные радикалы в соответствии с реакцией Фентона. Таким образом, на первозданной Земле не только присутствовало больше пероксида водорода, но он с большей вероятностью вступал в реакции, вызывая окислительный стресс.