Кислород. Молекула, изменившая мир — страница 35 из 89

всех организмов свойства, вероятнее всего, были унаследованы ими от LUCA.

Возможно, сравнение всех живых организмов кажется непосильной задачей, однако ученым удалось определить несколько свойств последнего общего предка. На первый взгляд, эти свойства могут показаться невероятными, но за ними скрывается определенная логика. Очень важно отметить, что эти данные согласуются с доказательствами, представленными в предыдущей главе. Скорее всего, LUCA могла использовать кислород для получения энергии еще в те времена, когда в воздухе отсутствовал кислород. Эта клетка была способна уберечь себя от окислительного стресса, вызванного ультрафиолетовым излучением. Сначала она создала средства защиты, что позволило изобрести оксигенный фотосинтез. Таким образом, первой движущей силой, стимулировавшей развитие сложных форм жизни на Земле, были свободные радикалы кислорода. В данной главе мы поговорим о том, какую информацию можно извлечь, изучая гипотетический портрет LUСА.


Поэт и эрудит Гёте однажды заметил, что нельзя понять Италию, не побывав на Сицилии. В биологии ничего нельзя понять, не поняв теорию эволюции, которая позволяет интерпретировать смысл невероятного биологического разнообразия. Справедливость идеи о том, что эволюция является результатом естественного отбора, в основном подкрепляется не отдельными впечатляющими экспериментами, а каждодневными наблюдениями миллионов биологов во всем мире. Эти бесчисленные наблюдения и oткрытия подтверждают фундаментальное единство жизни.

Когда мы оглядываемся вокруг, родство всего живого не кажется очевидным. Ну что общего у человека и шелковицы? Но, если копнуть поглубже, сходство проявляется все сильнее и сильнее. Например, последовательности ДНК человека и шимпанзе совпадают на 98,8%. И у человека, и у шимпанзе есть две ноги и две руки, голова, глаза, нос, уши, головной мозг, сердце, почки, кровеносная система и даже одинаковое число пальцев. Если не учитывать размер, многие из нас не отличат человеческую почку от почки шимпанзе. Даже в нашем поведении и манере ухаживания за партнером можно найти много общего. Кто возьмется утверждать, что это случайное совпадение? Более того, множество свойств объединяет нас с рыбами или даже с самыми первыми предками современных животных — низшими червями. Червь обладает двусторонней симметрией тела, имеет примитивное сердце, систему циркуляции крови, нервную систему, глаза, рот и анус. В отличие от растений, он движется и роет ходы в песке.

В учебниках 1950-х гг. все еще приводили список очевидных различий между растениями и животными в соответствии с классификацией Линнея, разделившего все формы жизни на царство растений и царство животных. Однако позднее эта двоичная система была заменена новой классификацией, предложенной в 1969 г. Р. Х. Уиттекером и основанной на существовании пяти царств: животные, растения, грибы, протисты (к которым относятся простейшие и водоросли) и бактерии. Новая система была удобна и проста и поэтому используется до сих пор. Но, несмотря на свои достоинства, она имеет очень серьезный недостаток. Дело в том, что разделение на пять царств основано на морфологических или поведенческих признаках организмов, а не их генетическом родстве. Представьте себе, что мы отнесем хищные растения и дятлов в одну и ту же категорию на том основании, что и те и другие являются многоклеточными и едят насекомых. На самом деле pастения, животные, грибы и протисты намного ближе друг к другу, чем кажется на первый взгляд. Но их родство проявляется на клеточном уровне, и обнаружить его можно только с помощью микроскопа. Как показывает анализ структуры клеток, представители этих четырех царств намного ближе друг к другу, чем к пятому царству — царству бактерий. Сходство между ними настолько фундаментальное, что все четыре царства объединяют в общую таксономическую гpyппy, или домен, эукариот (что по-гречески означает «имеющий истиннос ядро»). У всех эукариот есть ядро — самый крупный элемент клетки. Ядро имеет почти сферическую форму и отделено от остального содержимого клетки — цитоплазмы — двойной мембраной. Большинство эукариотических клеток имеют размер от сотых до десятых долей миллиметра (10 — 100 мкм), хотя бывают и исключения, например, протяженность отростков нервных клеток человека достигает одного метра. Цитоплазма эукариотической клетки содержит сотни или даже тысячи микроскопических специализиpoванныx органов (органелл), таких как митохондрии (которые есть у всех эукариот) и хлоропласты (у водорослей и растений), а также многочисленные складки и стопки мембран и белковый скелет. Такое сложное устройство эукариотических клеток позволяет предположить, что они эволюционировали путем конгломерации (так оно и было), о чем мы уже говорили в главе 3.

В ядре сосредоточен генетический материал эукариотической клетки — аморфный хроматин, состоящий из спиралей ДНК, обернутых вокруг белкового каркаса. При делении эукариотической клетки сначала происходит репликация ДНК, а затем хроматин конденсируется, образуя две плотные спирали (хромосомы), которые расходятся в стороны с помощью белкового каркаса и образуют два новых ядра. Изучение структуры генов эукариот преподнесло один из величайших сюрпризов в молекулярной биологии конца прошлого столетия. ДНК эукариот вовсе не является линейной кодирующей последовательностью, состоящей из генов, как ожерелье из бусин (так думали раньше, и так устроена бактериальная ДНК), а имеет прерывистую структуру, в которой гены составляют лишь несколько процентов. У большинства эукариот ДНК «состоит из кусочков»: гены белков чередуются с длинными некодирующими последовательностями ДHK, да и сами гены тоже прерываются участками, как кажется, бессмысленной ДНК. Бóльшая часть этой лишней ДНК, по-видимому, является «мусорной» и реплицируется клеткой, не принося ей никакой пользы. Какая-то часть — «обломки затонувших кораблей», фрагменты генов, измененных до неузнаваемости под действием мутаций, как нефункциональный человеческий ген витамина С[46]. Можно сказать, что эукариоты — клетки «с истинным ядром» — живут не под своим именем. Если бы мы придумывали им название сегодня, слово «истинный» следовало бы немедленно исключить. Эукариоты буквально «сотканы из лжи», в том смысле что они — совсем не то, чем представляются.

Бактерии устроены совсем по-другому. Прежде всего, у них нет ядра, и поэтому их относят к домену прокариот (что означает «не имеющий ядра»). Они гораздо мельче эукариот, обычно всего несколько миллиметров в диаметре, и окружены жесткой клеточной стенкой, что делает их похожими на малюсенькие капсулы. Клеточная стенка бактерий состоит из пептидогликанов — длинных цепей аминокислот и сахаров. Многие эукариоты тоже имеют клеточную стенку, но другого состава.

Бактериальные гены «голые»: их ДНК не опирается на белковый каркас. И число генов у бактерий значительно меньше, чем у эукариот, — несколько тысяч против десятков тысяч. Гены бактерий организованы в группы, объединенные общей функцией (опероны), и почти не содержат «мусорной» ДНК. В клетках бактерий нет складок внутренних мембран, белкового скелета или митохондрий. Простота организации позволяет бактериям размножаться с огромной скоростью просто путем деления пополам. Гены одних бактерий могут участвовать в рекомбинации с генами других бактерий в результате прямой инъекции генетического материала в процессе конъюгации. В результате такие свойства, как нечувствительность к антибиотикам, быстро распространяются по всей бактериальной популяции. По сравнению с неповоротливыми эукариотами, похожими на гигантские военные корабли, бактерии эволюционируют с ловкостью и скоростью истребителей.

Между прокариотами и эукариотами существует глубочайший провал, но две эти группы, безусловно, связаны между собой на самом фундаментальном уровне — на уровне биохимических механизмов. Это один из факторов, заставляющих биологов полагать, что все живые существа на Земле имеют между собой родственные связи. Все дороги ведут в Рим. Тoт факт, что все формы жизни систематически движутся по одному и тому же пути, означает, что все они изначально получили одни и те же инструкции. Например, гены всех клеток состоят из ДНК (дезоксирибонуклеиновой кислоты). Четырехбуквенный генетический код ДНК определяет порядок расположения аминокислот в белках. Этот код является универсальным для всех живых организмов. Кроме того, все детали механизма синтеза белка на основе заключенной в ДНК информации тоже одинаковы. Последовательность букв в ДHK считывается (транскрибируется) в последовательность информационной РНК (рибонуклеиновой кислоты). Эта молекула содержит инструкции для построения конкретного белка специализированными молекулярными машинами, называемыми рибосомами. На рибосомах закодированная информация превращается в белок. Во всех клетках это превращение осуществляется по одной и той же схеме при участии специфических «адаптерных» молекул. Это тоже молекулы РНК (транспортные РНК), которые связывают соответствующие аминокислоты. Транспортная РНК каждого типа распознает «свою» последовательность знаков на информационной РНК и присоединяет к растущей цепи белка соответствующую аминокислоту. Практически во всех живых организмах этот процесс протекает одинаково — на основе уникального генетического кода, с помощью информационной РНК, транспортных РНК, рибосом и аминокислот. По-видимому, для матери-природы в Рим ведет лишь одна дорога.

Какой из всего этого следует вывод? Вывод такой, что общее происхождение всех живущих или живших на Земле существ в первую очередь подтверждается на самом фундаментальном уровне. Речь идет о симметрии биологических молекул. Многие биологические молекулы, включая аминокислоты и простые сахара, могут существовать в двух зеркальных версиях — как левая и правая рука или как две перчатки. В природе оба изомера встречаются в одинаковой пропорции, и на первый взгляд непонятно, почему живые организмы должны отдавать предпочтение одной из двух форм. Но, когда решение принято, менять что-то по пути уже невозможно. Левую перчатку нельзя надеть на правую pуку. Фермент, катализирующий превращения левовращающего изомера, не может использовать в качестве субстрата правовращающий изомер. И если в ДНК закодирована одна или другая форма фермента, ничего уже не изменить. Синтезировать два фермента, работающие с зеркально-симметричными формами молекул, весьма расточительно: жизнь должна принять решение и следовать ему. Учитывая случайность выбора, можно ожидать, что какие-то виды организмов используют правовращающие молекулы, а какие-то — левовращающие (и, таким образом, полнее используют природные ресурсы), но это не так. Все формы жизни предпочитают правовращающие изомеры. Единственное разумное объяснение этого факта заключается в том, что LUСА использовал правовращающие изомеры (так уж вышло) и передал это свойство по наследству всем своим потомкам.