Кислород. Молекула, изменившая мир — страница 43 из 89

Но это еще не все. Витамин С нужен белым клеткам крови — лейкоцитам. При бактериальной инфекции первую линию защиты обеспечивает группа лейкоцитов, называемых нейтрофилами, которые высасывают из окружающей среды витамин С с помощью миниатюрных белковых насосов, встроенных в клеточные мембраны. За несколько минут концентрация витамина C внутри клеток повышается в 10 раз, а если инфекционной процесс продолжается, то и в 30 раз по сравнению с концентрацией в покоящихся нейтрофилах или в 100 раз по сравнению с концентрацией в плазме даже тех людей, которые принимают добавки витамина.

Вот в чем заключается антиоксидантное действие витамина С в соответствии с описанием Тома Кирквуда, которое я привел в начале главы. Нейтрофилам эта дополнительная защита нужна, чтобы пережить ими же затеянную битву. Их можно сравнить с солдатами, натягивающими противогазы, прежде чем выпустить во врага облако хлора. Вместо хлора нейтрофилы выпускают множество свободных радикалов и другие мощные окислители (включая хлорноватистую кислоту — производное хлора), уничтожающие бактерий[58]. Витамин С предотвращает или замедляет гибель самих нейтрофилов и ускоряет гибель бактерий, которые не могут поглощать витамин С или продолжать пользоваться им в обедненном локальном окружении. Левайн отмечал, что поглощение витамина С нейтрофилами можно использовать в фармацевтических целях, учитывая распространение устойчивых к антибиотикам бактерий.

А что можно сказать об анемии? Она также является симптомом цинги, но в данном случае речь идет не о физиологическом нарушении, как обсуждалось выше. Витамин C действует на неорганическое железо, содержащееся в пище, в желудке и в кишечнике, превращая его из нерастворимой формы (Fe3+) в растворимую (Fе2+), которая может всасываться в кишечнике. (Это обратная реакция по отношениюк той, которая происходила во всепланетном масштабе в докембрийских океанах и приводила к образованию полосатых железных гор; см. главу 3.) При недостаточности витамина С всасывается слишком мало железа, чтобы снабжать эритроциты гемоглобином (который содержит железо), что и приводит к анемии.



Столь широкий спектр функций создает вокруг витамина C магическую ауру. Однако в каждом случае на молекулярном уровне витамин С выполняет одну и ту же работу, хотя результаты могут быть противоположными — как при подбрасывании монетки. Чтобы понять, что происходит, давайте более подробно рассмотрим синтез коллагена, на примере которого можно не только наблюдать за действием витамина C, но и объяснить его антиоксидантные свойства и потенциальную опасность.

Коллаген синтезируется лишь в присутствии кислорода (см. главу 4). Кислород, как и витамин C, нужен для модификации некоторых аминокислот в составе коллагена уже после их включения в белок. Модификация заключается в гидроксилировании (присоединении дополнительных ОН-групп) белковых молекул. Эти группы обеспечивают образование перекрестных сшивок между молекулами коллагена: сначала формирование тройных нитей коллагена, а затем их объединение в более толстые волокна. Именно эти перекрестные сшивки объясняют невероятную прочность коллагена. Если нет витамина С и кислорода, перекрестные сшивки не образуются, и соединительная ткань ослабевает. Кроме того, негидроксилированный коллаген не выводится, а удерживается в синтезирующих его клетках. Он менее стабилен, более чувствителен к нагреванию и легче расщепляется пищеварительными ферментами. Желе из такого коллагена вряд ли украсит праздничный стол.

Механизм гидроксилирования коллагена выдает секрет витамина С: он является донором электронов. Атом кислорода в гидроксильной группе происходит из молекулярного кислорода. Чтобы присоединить этот кислород, каждый из двух атомов в молекуле должен получить электрон. Они обычно передаются парами, и лишь немногие соединения могут отдать единственный электрон и при этом не потерять устойчивость и не стать чересчур реакционноспособными, например металлы, которые могут существовать в нескольких состояниях окисления, и витамин С. В биохимических реакциях витамин С всегда отдает электроны. И никак иначе. Нужно сказать, он не разбрасывается электронами направо и налево: в физиологических условиях он с наибольшей вероятностью отдает их железу или меди[59]. Именно это происходит при синтезе коллагена. Витамин C отдает электрон железу, находящемуся в активном центре фермента гидроксилирования. А железо передает электрон кислороду, который теперь может присоединяться к аминокислоте в молекуле коллагена. При этом железо окисляется и переходит в биологически неактивную форму (Fe3+), в которой существует до тех поp, пока опять не получит электрон от витамина С.

Таким образом, роль витамина С состоит в регенерации биологически активной формы железа путем передачи электрона окисленной форме. Гидроксилирующий фермент действует как карусель, используя железо для присоединения кислорода к аминокислотным остаткам в белке. Снабжая железо электронами, витамин С обеспечивает безостановочное движение карусели.

Триумвират в составе железа (или меди), витамина С и кислорода является важнейшим элементом практически любого физиологического механизма с участием витамина C. Как минимум восемь ферментов используют витамин C в качестве кофактора, и все эти ферменты содержат железо или медь. Все они присоединяют кислород к аминокислотам с помощью железа или меди, и все используют витамин С для регенерации железа или меди в активной форме. По сути та же самая реакция обеспечивает всасывание железа в кишечнике. В этом случае витамин C передает электрон окисленному железу, переводя его в растворимую форму, которая может всасываться.

Почему витамин С так активно используется в качестве донора электронов? По двум причинам. Во-первых, витамин C очень хорошо растворяется в воде, поэтому он может концентрироваться в замкнутом пространстве, ограниченном мембранами (состоящими из непроницаемых для витамина липидов). Например, синтез норадреналина из дофамина происходит в окруженных мембранами везикулах в клетках коры надпочечников. Концентрация витамина С в везикулах может в 100 раз превышать его концентрацию в плазме крови. По мере расходования витамина С ферментом дофамин-монооксигеназой электроны проходят через мембрану (с помощью железосодержащего белка цитохрома b6s), чтобы регенерировать витамин С в везикулах. Таким образом, на протяжении дней или недель клетки используют запасенный витамин С и не зависят от колебаний его концентрации в плазме, вызванных изменениями рациона питания.

Вторая причина широкого использования витамина в качестве донора электронов заключается в том, что продукт реакции сравнительно стабилен и неактивен. Когда витамин С отдает электрон, он превращается в радикал аскорбиновой кислоты. По сравнению с другими радикалами он не очень активен. Его структура стабилизируется за счет делокализации электрона — того самого эффекта резонанса, изучением которого в конце 1920-х гг. занимался Лайнус Полинг. Это означает, что путем передачи электрона витамин С может блокировать цепные свободнорадикальные реакции, поскольку радикал аскорбиновой кислоты не участвует в цепных реакциях.

Несмотря на низкую реакционную способность, радикал аскорбиновой кислоты обычно отдает и второй электрон, превращаясь в дегидроаскорбат. Эта молекула неустойчива, и ее необходимо быстро «связать», иначе она подвергается спонтанному и необратимому распаду и выводится из организма. Именно по этой причине человеку требуется постоянно пополнять запасы витамина С, хотя, в принципе, организм умеет ограничивать потери витамина путем рецикла дегидроаскорбата. Есть несколько ферментов, которые связывают дегидроаскорбат и регенерируют витамин С. Обычно эти ферменты отбирают два электрона у маленького пептида глутатиона и переносят их на дегидроаскорбат. Поскольку в этом процессе происходит перенос пары электронов, регенерация витамина С не сопровождается образованием свободных радикалов.


Таким образом, «подбрасывание монетки» в случае витамина С сводится к передаче одного электрона (или двух с превращением в дегидроаскорбат). Регенерация из дегидроаскорбата происходит за счет приема пары электронов от глутатиона. Этот цикл объясняет функцию витамина не только в качестве кофактора, но и в качестве антиоксиданта. Но хотя витамин С предпочитает отдавать электроны железу или меди, другие молекулы, желающие пpиобрести один электрон, тоже могут забрать его у витамина С. К числу таких молекул относятся многочисленные свoбодные радикалы (кoторые по определению содержат один распаренный электрон; см. главу 6).

Когда в реакцию вступает свободный радикал, он обычно отнимает электрон у другого реагирующего вещества и превращает его в радикал. Тот, в свою очередь, отнимает электрон у соседней молекулы. Цепная реакция продолжается до тех пор, пока два свободных радикала не прореагируют между собой, нейтрализуя друг друга, или пока не образуется малоактивный свободный радикал. Витамин С «гасит» цепную реакцию, поскольку его свободный радикал — радикал аскорбиновой кислоты — обладает низкой активностью. Поэтому в присутствии витамина С цепная реакция затухает. Аналогичным образом ведет себя жирорастворимый витамин Е (альфа-токоферол). Он содержится не в растворе, а в мембранах и действует совместно с витамином С на границе мембран и цитозоля (водного содержимого цитоплазмы, окружающего внутриклеточные органеллы). В реакции витамина Е со свободными радикалами тоже образуются стабилизированные за счет резонанса неактивные радикалы. Радикалы токоферола вновь превращаются в витамин Е, забирая электроны у витамина С.

Как я упомянул в начале главы, эти простые повторяющиеся реакции таят в себе большую опасность — это темная сторона действия витамина С. Мы уже обратили внимание на связь между витамином С, железом и кислородом. Когда витамин С реагирует с железом и кислородом, он выступает в роли донора электронов,