Кислород. Молекула, изменившая мир — страница 54 из 89

По-видимому, макроядро стареет и умирает первым. Мы точно не знаем, что вызывает его старение. Хотя Кларк склоняется к теории программированного старения (в чем, как мне кажется, он не прав), он связывает старение микроядра с износом — с накоплением на протяжении 30 поколений случайных генетических мутаций. Но какой бы ни была причина старения клеток парамеция, чтобы перезапустить биологические часы, он должен прибегнуть к половому размножению. При слиянии двух подходящих клеток в них пробуждаются микроядра, которые делятся путем мейоза с образованием двух гаплоидных микроядер для каждой дочерней клетки. Одно ядро из каждой клетки обменивается на одно ядро из другой клетки, и вновь перемешанные пары гаплоидных ядер сливаются с образованием одного диплоидного микроядра для каждой клетки. Далее эти ядра делятся путем митоза с образованием новых диплоидных макроядер для каждой клетки. Новые микроядра отключаются, а новые микроядра принимаются за рутинную работу. Старые микроядра расщепляются по определенной программе, а их компоненты утилизируются омоложенными клетками. Таким образом, парамеций сочетает преимущества быстрого воспроизведения бесполым способом и периодического вычищения генома за счет полового размножения.

Расщепление старого микроядра, вероятно, является отражением важнейшего этапа эволюции. Мы впервые сталкиваемся с ситуацией, когда ДHK не передается следующему поколению, а направляется на уничтожение. Не объясняет ли это происхождение соматических клеток и свойственного им процесса старения? Как считает Кларк, «именно программируемая смерть микроядра первых эукариот, таких как парамеций, стала предвестником нашей собственной смерти». Я не знаю, так это или нет в буквальном смысле (Кларк видит связь между программируемым разрушением макроядра и программируемым разрушением человеческого тела), но в общем смысле это, безусловно, верно. Соматические клетки (клетки тела) — полезное, но вторичное образование по отношению к зародышевым клеткам, и они не просто смертны, но их гибель запрограммирована. Преимущества очевидны: тело позволяет осуществлять специализацию отдельных клеток (а специалисты всегда имеют преимущество перед дилетантами) и обеспечивать защиту зародышевых клеток. Однако наше тело не должно нас переживать. Как гласит старая пословица, курица — лишь способ сделать из яйца новое яйцо. Человек — лишь надежный способ для яйцеклетки передать генетическое содержимое новой яйцеклетке.

Одноразовая сома сыграла важнейшую роль в эволюции старения и позволяет объяснить, почему мы стареем, но не объясняет механизм старения. Теория старения, связанная с идеей одноразовой сомы, была сформулирована Томом Кирквудом в конце 1970-х гг. и позднее развивалась Кирквудом и знаменитым генетиком Робином Холлидеем. Сегодня большинство ученых считают эту теорию оптимальной основой для изучения процессов старения.

Теория строится на различии между бессмертными зародышевыми клетками и смертными соматическими клетками (клетками тела), которое впервые подметил великий немецкий биолог Август Вейсман в 1880 г. Кирквуд и Холлидей считали причиной этого различия необходимый компромисс между выживанием и воспроизведением. Клетки тела нужны хотя бы для того, чтобы дожить до репродуктивного возраста. Это обходится организму дорого: на поддержание здорового тела и духа на протяжении достаточно долгого периода, пока размножаются зародышевые клетки, уходит значительная часть энергии организма. Бóльшая часть поглощаемой нами еды сжигается для поддержания тела в рабочем состоянии: сердце должно биться, мозг — думать, почки — фильтровать, легкие — дышать. То же самое справедливо и на клеточном уровне. Повреждения и мутации ДНК, о которых мы говорили в предыдущих главах, необходимо исправлять за счет синтеза и встраивания новых фрагментов. Нужны специфические механизмы, проверяющие качество репарации ДНК. Поврежденные белки и липиды нужно расщеплять и заменять новыми. Значительный оборот белков в нашем организме подтверждается активным потреблением азота (в форме аминокислот) и его постоянным выведением (в виде мочевины с мочой). Выделение мочевины отражает расщепление и выведение поврежденных белков. Гипотеза одноразовой сомы гласит, что все эти операции осуществляются за счет энергии, которую можно было бы направить на воспроизведение.

Справедливость гипотезы зависит от ее предсказательной способности. Если для выживания и воспроизведения требуется энергия или ресурсы, источник которых ограничен, должно существовать какое-то оптимальное равновесие, когда на одной чаше весов находится поддержание сохранности тела, а на другой — успешность воспроизведения. Это оптимальное равновесие должно быть разным для разных видов организмов в зависимости от среды обитания, конкуренции, фертильности и других факторов. В таком случае должна существовать общая зависимость между продолжительностью жизни вида и его плодовитостью (количеством детенышей за репродуктивный период). Более того, факторы, увеличивающие продолжительность жизни, должны снижать плодовитость, и наоборот. Существуют ли такие закономерности в природе?

Несмотря на все сложности определения максимальной продолжительности жизни и репродуктивного потенциала животных в дикой природе и даже в зоопарках, ответ на этот вопрос однозначно положительный. За некоторыми исключениями, обычно связанными с особенностями существования, наблюдается строгая обратная зависимость между максимальной продолжительностью жизни и плодовитостью вида. Например, мыши начинают размножаться в возрасте шести недель от роду, приносят ежегодно несколько приплодов и живут всего около трех лет. Домашние кошки первый раз приносят котят примерно в год, дают два или три приплода в год и живут 15 — 20 лет. Травоядные животные обычно производят детенышей один раз в год и живут 30 — 40 лет. Вывод такой, что за высокую плодовитость приходится расплачиваться малой продолжительностью жизни, а при большой продолжительности жизни наблюдается низкая плодовитость.

А верно ли, что факторы, повышающие продолжительность жизни, снижают плодовитость? Целый ряд данных подтверждает эту идею. Например, при ограничении калорийности питания, когда животных переводят на сбалансированную, но низкокалорийную диету, продолжительность жизни возрастает на 30 — 50%, но плодовитость в этот период снижается. В главе 13 мы обсудим молекулярные основы этой закономерности, которые только начинают вырисовываться, хотя впервые эта идея была высказана в 1930-х гг. Тем не менее суть этой закономерности в дикой природе ясна: при недостатке пищи неограниченное воспроизведение угрожает жизни и родителей, и потомства. Модель ограничения калорийности питания отражает картину умеренного голода и усиления общего стрессового ответа организма. Когда голодные времена позади, животные вновь начинают нормально размножаться. Но если цель стрессового ответа заключается в том, чтобы сохранить животным жизнь до наступления лучших времен, мы действительно должны наблюдать обратную зависимость между выживаемостью и плодовитостью. Известны ли примеры менее экстремальных ситуаций?

Иногда в дикой природе можно наблюдать отбор долгожителей. В начале 1990-х гг. зоолог Стивен Аустад, работавший в Гарварде, изучал продолжительность жизни, старение и плодовитость виргинского опоссума — единственного сумчатого животного североамериканского континента. Опоссума считают одним из самых глупых животных; отношение размера головного мозга к общему размеру тела у него меньше, чем у большинства млекопитающих. Опоссумы являются легкой добычей для хищников. Их излюбленный способ защиты — притворяться мертвыми, со всеми печальными и предсказуемыми последствиями. В горах Виргинии опоссумы редко живут дольше 18 месяцев (более половины становятся добычей хищников, а те, кого не съедают, очень быстро стареют). Но благодаря невероятной плодовитости они до сих пор не вымерли и даже распространились. В среднем за один сезон самка приносит два приплода по 8 — 10 детенышей в каждом.

Аустад решил узнать, как изменяется продолжительность жизни и плодовитость опоссумов, если им не угрожают хищники. Подходящим местом для эксперимента оказался остров Сапело у берегов Джорджии, где опоссумы, по-видимому, живут уже на протяжении 4000 или 5000 лет. Условия эксперимента позволяют проверить теорию одноразовой сомы. В соответствии с теорией эволюции в среде, где нет хищников, опоссумы стареют медленнее. Животные с большей продолжительностью жизни дольше приносят потомство, и, следовательно, естественный отбор благоприятствует их выживанию по сравнению с короткоживущими особями. Однако существует два варианта развития событий, и это позволяет пролить свет на механизм старения. Если старение — просто результат накопления повреждений, замедление этого процесса должно увеличивать продолжительность жизни, но не влиять на плодовитость в более молодом возрасте. Напротив, если цена здоровой старости — снижение плодовитости, мы должны наблюдать иную картину: увеличение продолжительности жизни достигается за счет снижения плодовитости в ранние годы.

В эксперименте с опоссумами наблюдалась вторая ситуация. Аустад наблюдал за 70 опоссумами в горах Виргинии и на острове Сапело. Он подтвердил, что материковые опоссумы после 18 месяцев очень быстро старели, так что в их жизни был лишь один сезон размножения. Только 8% особей доживали до второго сезона размножения, и никто не доживал до третьего. В среднем самки приносили по восемь детенышей за один сезон. Напротив, островные животные старели значительно медленнее. Примерно половина самок доживала до второго сезона размножения, и 9% — до третьего. Биохимические параметры старения (образование перекрестных сшивок коллагена в хвосте животных — тот же самый процесс, с которым связано появление морщин у нас на коже) показали, что островные животные стареют примерно в два раза медленнее своих материковых сородичей. Но важно, что в каждом помете островных животных было не восемь детенышей, а пять или шесть. Количество детенышей в первом и втором помете было одинаковым, и это означает, что плодовитость не снижается с возрастом, а