Кислород. Молекула, изменившая мир — страница 60 из 89

нивые люди живут дольше», опубликованной в газете Baltimore Sun в 1927 г.

Теория Перла основана на эмпирическом наблюдении, заключающемся в том, что длительность жизни животных определяется фиксированным числом сердцебиений. Измерив частоту сердечных сокращений мыши и умножив ее на продолжительность жизни мыши, можно получить значение, которое примерно одинаково для большинства млекопитающих, будь то лошадь, корова, кошка, собака или морская свинка. То же самое относится к таким показателям, как общий объем прокачиваемой крови, количество сжигаемой глюкозы или общая масса синтезированных белков. Все эти показатели связаны со скоростью метаболизма, которую принято измерять в единицах количества кислорода, потребляемого за один час. Обычно чем меньше размер животного, тем выше скорость метаболизма, что объясняется необходимостью поддерживать постоянную температуру тела. Сопоставляя скорость метаболизма и продолжительность жизни разных животных, можно получить удивительную зависимость. Максимальная продолжительность жизни лошади составляет 35 лет при скорости основного метаболизма 0,2 л кислорода на килограмм массы тела в час. За всю жизнь лошадь потребляет около 60 тыс. л кислорода на килограмм массы. Белка живет не более семи лет при скорости метаболизма около 1 л кислорода на килограмм в час. За всю жизнь она тоже потребляет около 60 тыс. л кислорода на килограмм. Это соотношение соблюдается практически для всех видов животных. Коэффициент корреляции данной зависимости называют энергетическим потенциалом продолжительности жизни (LEP, от lifetime energy potential).

Сначала об этом потенциале рассуждали в терминах скоростей химических реакций. Но потом была выявлена связь между скоростью метаболизма и скоростью образования свободных радикалов. Дело в том, что какая-то часть кислорода (несколько процентов), расходуемого на метаболические нужды клетки, покидает митохондрии в форме супероксидных радикалов (см. главу 6). За всю жизнь в результате постоянной утечки выделяется весьма значительное количество супероксидных радикалов, возможно, до 2000 л/кг. Если фиксированная доля вдыхаемого кислорода превращается в свободные радикалы, значит, чем выше потребление кислорода, тем больше свободных радикалов образуется в организме. Таким образом, мелкие животные, которые живут быстро и умирают молодыми, теоретически производят больше свободных радикалов. По-видимому, это общее правило. Среди широкого спектра млекопитающих существует строгая обратная зависимость между скоростью образования свободных радикалов и продолжительностью жизни: чем больше радикалов, тем короче жизнь[69].

Впервые о возможной связи между свободными радикалами и старением в 1956 г. заявил молодой химик Денам Харман из Калифорнийского университета в Беркли. До обучения биологии в Стэнфорде Харман семь лет проработал в компании Shell Oil, где изучал химические свойства свободных радикалов. Он быстро понял, что аналогичные процессы могут происходить и в биологических системах. Еще в 1956 г. он настолько четко выразил свою идею, что его формулировка актуальна до сих пор:


«Старение и связанные с ним дегенеративные процессы в целом могут быть вызваны разрушительным влиянием свободных радикалов на содержимое клетки и соединительные ткани. Вероятно, свободные радикалы в основном выделяются в результате реакций с участием молекулярного кислорода, катализируемых в клетке окислительными ферментами, и в соединительных тканях под действием следовых количеств таких металлов, как железо, кобальт и марганец».


Более 50 лет ученые занимаются анализом повреждений клеточных мембран, белков и ДНК под действием свободных радикалов. Никто не сомневается, что свободные радикалы образуются и что наносимые ими повреждения пропорциональны скорости их выделения. Проблема в том, что изначально свободнорадикальная теория старения не учитывала причинно-следственных связей. В быстро стареющих организмах образуется больше свободных радикалов, но означает ли это, что свободные радикалы вызывают старение, являются продуктами старения или представляют собой посторонний фактор, не имеющий прямого отношения к старению? Наилучший способ проверки причинно-следственной связи состоит в изменении параметров, например в увеличении продолжительности жизни с помощью антиоксидантов. Первые эксперименты Хартмана показали, что антиоксиданты могут замедлять старение мышей, но последующие работы этого не подтвердили[70]. Как мы обсуждали в главе 9, пока мы не уверены в том, что пищевые добавки антиоксидантов могут увеличивать продолжительность жизни. А вот сбалансированная диета, по-видимому, корректирует недостаточность витаминов, которая может сократить жизнь. Все эти наблюдения заставили многих исследователей отказаться от идеи о важной роли свободных радикалов в организме.

Однако теория скорости жизни имеет недостаток более общего плана: она не является универсальной даже для теплокровных позвоночных животных. Вот почему выше я говорил о «большинстве млекопитающих». Птицы и летучие мыши меньше подвержены нападениям хищников, поскольку умеют летать, и их продолжительность жизни и скорость метаболизма не укладываются в общую корреляцию. Летучие мыши живут до 20 лет, хотя их скорость метаболизма сравнима с таковой у обычных мышей, живущих не более четырех лет. Скорость метаболизма голубей сравнима с таковой у крыс, но живут они 35 лет — в десять раз дольше несчастных крыс. Самый удивительный пример — колибри. Частота сердечных сокращений у этих птиц составляет от 300 до 1000 ударов в минуту, и, чтобы не впасть в кому от голода, они вынуждены облетать тысячи цветов за день. При таком метаболизме «по правилам» они должны жить год или два, а они живут до десяти лет и более, потребляя за все это время 500 тыс. л кислорода на килограмм массы тела. В целом, если мы умножим объем потребляемого птицами кислорода на их продолжительность жизни, мы придем к выводу, что они подвергаются в десять раз более интенсивному воздействию свободных радикалов, чем короткоживущие млекопитающие, такие как крысы, и в два раза более интенсивному, чем человек. Тот факт, что птицы живут долго при такой высокой скорости метаболизма, часто считают доказательством несостоятельности теории скорости жизни. Однако это суждение справедливо только в том случае, если мы соглашаемся, что всем живым существам отпущено фиксированное число сердцебиений. На самом деле, исключения только подтверждают правило — или хотя бы его модифицированную версию.


Птицы — идеальный объект для проверки гипотезы о связи продолжительности жизни с выделением свободных радикалов, а не с какими-то другими аспектами метаболизма. Если продолжительность жизни связана с метаболизмом в целом, следует ожидать, что скорость образования свободных радикалов различна при разной скорости метаболизма, что мы и наблюдаем в случае большинства млекопитающих. Но если свободные радикалы вызывают старение, а птицы, как мы знаем, расходуют очень много кислорода, это означает, что у птиц есть очень эффективный механизм блокировки выделения свободных радикалов. Другими словами, если свободнорадикальная теория старения справедлива, птицы должны производить меньше свободных радикалов, чем млекопитающие, хотя поглощают гораздо больше кислорода.

Густаво Барха из Университета Комплутенсе в Мадриде занимался этим вопросом на протяжении 1990-х гг., постепенно совершенствуя методы измерения пероксида водорода, выделяющегося из митохондрий птиц и млекопитающих, а также анализируя повреждения митохондриальной и ядерной ДНК. Он обнаружил, что изолированные митохондрии голубей потребляют в три раза больше кислорода, чем митохондрии крыс, выделенные из эквивалентных тканей. Но несмотря на активное поглощение кислорода, митохондрии голубей выделяют в три раза меньше пероксида водорода. Барха заключил, что доля кислорода, превращающегося в свободные радикалы, в организме голубей в 10 раз ниже, чем в организме крысы, что объясняет почти десятикратное различие в продолжительности жизни этих животных. Он получил аналогичные данные для мышей, канареек и длиннохвостыx попугаев. Если это не формальное доказательство, значит, невероятное совпадение (рис. 11).


Рис. 11. Выделение пероксида водорода из митохондрий сердечной мышцы мыши (левый столбик; максимальная продолжительность жизни 3,5 года), длиннохвостого попугая (центральный столбик; максимальная продолжительность жизни 21 год) и канарейки (правый столбик; максимальная продолжительность жизни 24 года). Выделение свободных радикалов у птиц происходит гораздо менее интенсивно, чем у млекопитающих такого же размера. Звездочки обозначают статистически значимые различия между группами (p<0,05 и p<0,01 соответственно). Мышь, попугай и канарейка имеют примерно одинаковый размер и одинаковую скорость метаболизма в покое. Аналогичная зависимость обнаружена для голубей и крыс. Митохондриальная теория старения предсказывает, что утечка свободных радикалов должна быть слабее в организме летучих мышей, чем в организме мышей (которые имеют такую же скорость метаболизма, но живут в пять раз меньше), но пока мы этого не знаем. Рисунок (с модификациями) приводится с разрешения Густаво Барха и Нью-Йоркской академии наук

Почему митохондрии птиц столь совершенны? Возможно, способность летать требует высочайшей эффективности энергетического метаболизма, вне зависимости от продолжительности жизни (необходимое для полета отношение силы мышц к массе тела требует эффективного энергетического метаболизма). Млекопитающие в этом смысле остались далеко позади. Барха обнаружил, что митохондрии птиц лучше удерживают кислород и почти не выделяют свободных радикалов, так что практически весь потребленный кислород превращается в воду. В результате птицам требуется меньше антиоксидантов для поимки ускользнувших радикалов. Это объясняет одну старую загадку — плохую корреляцию между содержанием антиоксидантов и продолжительностью жизни птиц и млекопитающих. Предположение, что птицам для долгой жизни требуется больше антиоксидантов, оказалось неверным, поскольку их митохондрии выделяют гораздо меньше свободных радикалов. С антропоцентрической точки зрения это настоящий удар: гораздо труднее заменить «протекающие» митохондрии, чем принимать «правильные» антиоксиданты. Но есть в этом и позитивная сторона. Даже если пример птиц нам не подходит, эксперименты Бархи подтверждают гипотезу, что свободные радикалы укорачивают жизнь. Мы не можем брать пример с птиц, но, возможно, можем бороться со свободными радикалами?