Кислород. Молекула, изменившая мир — страница 65 из 89

тканевые образования с низкой потребностью в кислороде. Более того, для многих опухолей кислород токсичен: радиотерапия может оказаться в три или четыре раза более эффективной при оксигенации опухоли (ее насыщении кислородом). Как часто бывает, существуют подтверждающие правило исключения. Некоторые опухолевые клетки содержат множество митохондрий. В частности, некоторые железистые опухоли (онкоцитомы) и опухоли печени (гепатома Новикова) содержат клетки с огромным количеством митохондрий. Однако при ближайшем рассмотрении выясняется, что эти митохондрии нефункциональны. Таким образом, если клетка содержит активную теломеразу и небольшое число малоактивных митохондрий, она может делиться бесконечно.

Существует еще один фактор, помогающий поддерживать существование быстро делящихся клеток, — их быстрый оборот. При делении клетки воспроизводится цитоплазма, митохондрии и ДНК. Это означает, что митохондрии быстрее реплицируются в быстро делящихся клетках, чем в неделящихся клетках, даже если последние набиты митохондриями. В популяции митохондрий обычно есть как целые, так и совсем изношенные. Неповрежденные митохондрии реплицируются быстрее. В результате при каждом удвоении клетки новый пул митохондрий образуется из наиболее хорошо сохранившихся митохондрий старого поколения, что и позволяет восполнить популяцию. Следовательно, можно предположить, что в быстро делящихся опухолевых клетках лишь небольшое число митохондрий находится в хорошем состоянии.

В неделящихся клетках, в которых скорость репликации митохондрий намного ниже, важным параметром становится скорость распада митохондрий. Обычно митохондрии в таких клетках заменяются раз в несколько недель. В неделящихся клетках частично поврежденные митохондрии могут распадаться медленнее, чем полноценные митохондрии, что приводит к преобладанию поврежденных митохондрий[77]. Это явление называют «выживанием самого медленного» (SOS, от survival of thе slowest); возможно, это одна из причин отмирания старых дифференцированных клеток.

Таким образом, продолжительность жизни клетки зависит от активности ее митохондрий и эффективности работы систем предотвращения и репарации повреждений. Эффективность предотвращения и репарации повреждений никогда не достигает 100%, так что клетки, нуждающиеся в энергии, постепенно накапливают поврежденные митохондрии, что в конечном итоге приводит к гибели клетки. Эта ситуация наиболее ярко проявляется в неделящихся клетках, которые не могут восполнять популяцию митохондрий путем отбора наименее поврежденных митохондрий. Итак, мы наблюдаем широкий диапазон возможной продолжительности жизни клеток — от практически бессмертных стволовых и опухолевых клеток до нейронов, клеток сердечной мышцы и скелетных мышц, которые обречены с того момента, когда получили работу, связанную с большими энергетическими затратами. В принципе, продолжительность жизни этих метаболически активных клеток можно увеличить путем повышения их сопротивляемости окислительному стрессу. Однако при этом вся энергия, направляемая на обновление клетки, расходуется в ущерб ее нормальным метаболическим функциям. Чтобы защитить нейроны от нападений свободных радикалов, придется использовать энергию, предназначенную для мышления или координации движений тела, что, несомненно, сопряжено со снижением эффективности этих функций. Таким образом, достичь долгожительства и биологического совершенства одновременно невозможно, так что между этими функциями устанавливается некое равновесие. Можем ли мы жить дольше? Возможно. Некоторые черепахи живут до 200 лет, однако их успешность в жизни не связана с быстротой тела и разума. Панцирь обеспечивает им защиту и позволяет иметь менее активный метаболизм. У них другое равновесие.

Можно сделать два важных вывода. Во-первых, Вейсман еще раз ошибся: между зародышевыми и соматическими клетками не существует фундаментального различия. Некоторые соматические клетки, например раковые, достигают бессмертия за счет потери митохондрий и быстрой репликации. Так же обретает бессмертие гидра: она имеет множество стволовых клеток, которые могут превращаться в любые зрелые клетки тела, и изношенные клетки постоянно заменяются новыми. Цена бесконечной жизни — простота строения, при котором замена клеток осуществляется без ущерба для органов и организма в целом. Наши с вами стволовые клетки обладают такой же способностью регенерации (подумайте о клонировании), однако структура нашего тела совсем иная: мы не можем, например, заменить нейроны головного мозга и при этом сохранить свой опыт и индивидуальность. Когда одна система начинает приходить в негодность, остальные системы это чувствуют. Стареющий гипофиз производит меньше гормонов, и это неизбежно затрагивает жизнеспособность стволовых клеток в коже. Пока мы не найдем решения этой проблемы, мы не сможем пережить наши нейроны.

Во-вторых, теория одноразовой сомы касается не только размножения. На размножение расходуются ресурсы, которые могли бы направляться на поддержание жизни, но то же самое можно сказать и о любой человеческой деятельности. Если мы хотим думать, бегать, создавать, взаимодействовать — делать все, что делает нас людьми, — мы обрекаем себя на короткую жизнь. В конце концов, возможно, Раймонд Перл был прав, и лень в какой-то степени оправданна, если только мы не напиваемся и не объедаемся в такой степени, что умираем молодыми. Эта же идея отражена в бестселлере «Почему японцы не стареют» японского кардиолога и двух его американских коллег. На основании результатов 25-летних исследований авторы утверждают, что секрет жителей японского острова Окинава, на котором проживает больше столетних людей, чем где-либо в мире, заключается не только в генах, питании и физических упражнениях, но и в их спокойном образе жизни и низком уровне стресса. У жителей острова даже есть специальное слово, tege, которое означает «наполовину»: забудь о графике, не пытайся доделать сегодня дела, которые можно доделать завтра. Я подозреваю, что они правы.


Нам предстоит найти ответ еще на один вопрос, который может подтвердить или опровергнуть все сделанные выше заключения. Я говорил, что митохондриальное дыхание нас убивает. Но сначала митохондрии губят самих себя. Если повреждаются все митохондрии, как же содержащие митохондрии организмы умудряются сохраняться из поколения в поколение? Как получается, что дети родятся молодыми?

Эта ситуация напоминает мне об упадке и гибели Византийской империи. Если верить историку XVIII в. Эдварду Гиббону, империя находилась в состоянии упадка на протяжении 1000 лет. Некоторым императорам удавалось на время ее оживлять, но «испорченность» греков вела к тому, что падение империи было лишь вопросом времени. Такая же «испорченность» присуща митохондриям: уничтожение собственных хозяев для митохондрий — лишь вопрос времени, даже если этот процесс длится 1000 поколений. Но в природе не происходит катастрофы, аналогичной падению Константинополя. Как же нам удается преодолеть свою «испорченность»?

Позвольте описать ситуацию подробнее. Для функционирования любого организма необходима неповрежденная митохондриальная ДНК. Половые клетки должны передавать следующему поколению новые митохондрии, так что митохондриальная ДHK каким-то образом должна обновляться. Но дело в том, что митохондрии копируют свою ДНК неполовым путем. Мы уже видели, что половое размножение позволяет обновить гены, но как митохондриальный геном возобновляется без полового размножения? Как биологические часы возвращаются на ноль в организме новорожденного ребенка? Свободноживущие бесполые организмы, такие как бактерии, сохраняют генетическую целостность на протяжении поколений за счет сочетания быстрого воспроизведения и строгого естественного отбора. Однако такой способ отбора митохондриям не подходит, иначе они бы реплицировались с такой же скоростью, как раковые клетки, и мы превратились бы в митохондриальные опухоли. Необъяснимый на первый взгляд парадокс заключается в том, что митохондрии регенерируют без помощи полового процесса или строгого отбора (обходят так называемый храповик Мёллера[78]). Так как же поступают митохондрии?

Чтобы ответить на этот вопрос, нужно проанализировать судьбу митохондрий в половом процессе, особенно судьбу митохондрий сперматозоидов. Хвостатые человеческие сперматозоиды — излюбленный сюжет телевизионных передач, всем известна их невероятная сила и выносливость. Однако, как выясняется, в этом вопросе существует серьезная путаница и недопонимание. Считается, что сперматозоиды слишком малы, чтобы содержать митохондрии. На самом же деле, в средней части (теле) сперматозоида сосредоточено от 40 до 60 митохондрий. Митохондрии сперматозоида проникают в яйцеклетку вместе с телом, но долго не живут. Точно неизвестно, что с ними происходит, но потомство наследует митохондрии только от матери. Это справедливо как для человека, так и для подавляющего большинства организмов, размножающихся половым путем, включая растения.

Некоторые самые выдающиеся биологи пытались понять, почему мужские митохондрии не передаются по наследству. Наиболее распространенная версия была предложена Джоном Мейнардом Смитом и Эорсом Шатмари в книге «Происхождение жизни». Суть вот в чем. Наследование митохондрий от обоих родителей могло бы стать предпосылкой для эволюции «эгоистических» органелл. При делении клетки происходит репликация ядерной ДНК, которая распределяется пополам между двумя дочерними клетками. Они имеют идентичный набор генов, так что между ними не возникает неравенства и конкуренции. Но с митохондриями дело обстоит иначе, поскольку они имеют собственную ДНК, которая реплицируется независимым образом. В результате состав популяции митохондрий в клетке зависит от скорости репликации (и распада) отдельных митохондрий, а это опасно. Любая мутация митохондриальной ДНК, повышающая скорость репликации митохондрий, приводит к тому, что именно эти митохондрии занимают доминирующее положение в клетке и в клетках потомства, даже если эта мутация снижает эффективность дыхания (на самом деле, особенно если снижается эффективность дыхания, поскольку в результате митохондрии меньше повреждаются). Мутация митохондрий половых клеток представляет опасность для всего растущего организма. В соответствии с «эгоистической теорией» размножению эгоистических митохондрий препятствует механизм