Кислород. Молекула, изменившая мир — страница 7 из 89

[9]. Поскольку животные, бактерии и грибы потребляют органические вещества, содержащиеся в других организмах, их можно отнести к группе потребителей. Все они получают энергию за счет дыхания — контролируемого сжигания сахаров, жиров и белков, синтезируемых производителями в процессе фотосинтеза. Суммарная реакция процесса дыхания, в которой потребляются кислород и сахара, а выделяются вода и углекислый газ, практически полностью противоположна реакции фотосинтеза и потребляет примерно столько же кислорода, сколько образуется при фотосинтезе. В обратном процессе в результате сжигания потребляемой нами пищи под действием кислорода регенерируется углекислый газ, необходимый для продолжения фотосинтеза; так что мы не должны чувствовать себя паразитами — растения нуждается в нас не меньше, чем мы нуждаемся в них.


Если бы «потребители» поглощали все органическое вещество, синтезируемое первичными «производителями», весь кислород из воздуха расходовался бы для дыхания. Возможно, вы удивитесь, но практически так оно и есть. Выделяемый в процессе фотосинтеза кислород почти полностью (на 99,99%) потребляется животными, грибами и бактериями, питающимися друг другом или останками «производителей». Однако кажущаяся ничтожной разница в 0,01% является основой всей окружающей нас жизни. Это тo органическое вещество, которое не сжигается, а остается в земле под минеральными отложениями. Так за миллиарды лет накопилась вся содержащаяся в земле органическая материя.

Если органические остатки попадают в землю, а не съедаются «потребителями», расходуется меньше кислорода[10]. Избыток кислорода накапливается в атмосфере. Практически весь бесценный для нас атмосферный кислород накопился за 3 млрд лет из-за минимального различия между объемом кислорода, выделяемым первичными «производителями» и используемым «потребителями». Гигантское количество мертвой органической материи, захороненной в минеральных отложениях, многократно превышает общее углеродное содержание живого мира. По оценкам геохимика Роберта Бернера из Йельского университета, в земной коре содержится в 26 тыс. раз больше углерода, чем в живой биосфере. Иначе говоря, на живые организмы приходится лишь 0,004% органического углерода, в настоящее время находящегося на (или в) Земле. Если бы вся эта органическая материя прореагировала с кислородом, кислорода не осталось бы совсем. Если же с кислородом реагирует лишь 0,004% всего органического углерода (то есть только живая биосфера), сохраняется 99,996% атмосферного кислорода. Это означает, что даже полное уничтожение мировых запасов леса вряд ли изменит наш кислородный запас, хотя в экологическом отношении подобный идиотизм стал бы величайшей трагедией.

Захороненное органическое вещество превращается в уголь, нефть и природный газ, а также другие соединения в составе осадочных пород и минералов, такие как пирит («золото дураков»). В обычных песчаных горах находится всего несколько весовых процентов органического углерода. Но, поскольку таких гор очень много, они на самом деле содержат основное количество запасенного в земной коре органического вещества. Лишь небольшая часть захороненного углерода существует в форме ископаемого топлива. Так что, даже если нам удастся полностью сжечь уголь, нефть и газ, запасенные в земной коре, мы израсходуем лишь несколько процентов атмосферного кислорода.

Однако первым источником кислорода в атмосфере был не биологический процесс фотосинтеза, а его химический эквивалент. Лучшей иллюстрацией значения скорости реакции являются биологические процессы. Солнечная энергия, особенно в виде ультрафиолетовых лучей, может расщеплять воду на водород и кислород без участия биологических катализаторов. Газообразный водород очень легкий и преодолевает земное притяжение. Кислород гораздо тяжелее и поэтому удерживается в атмосфере. Бóльшая часть кислорода, образовавшегося на первозданной Земле, реагировала с железом в горных породах и океанской воде, постепенно включаясь в состав коры. В результате стала исчезать вода, поскольку после ее расщепления водород утекал в космическое пространство, а кислород не накапливался в воздухе, а поглощался земной корой.

Считается, что расщепление воды под действием ультрафиолетового излучения стало причиной исчезновения океанов на Марсе и Венере[11]. Сегодня обе планеты безводны и безжизненны; их кора окислена, а атмосфера наполнена углекислым газом. Обе планеты медленно окисляются, и в их атмосфере всегда содержится лишь следовое количество свободного кислорода. Почему это случилось на Марсе и на Венере, но не случилось на Земле? Возможно, критическим параметром была скорость образования кислорода. Если кислород образуется медленно — не быстрее, чем горы, минералы и газы подвергаются выветриванию и воздействию продуктов вулканической активности, — он полностью связывается корой. Кора постепенно окисляется, но в воздухе кислород не накапливается. И только если кислород образуется быстрее, чем взаимодействует с новыми горами и минералами, он может накапливаться в атмосфере.

Сама жизнь спасла Землю от участи Марса и Венеры. Вливание кислорода, образующегося в процессе фотосинтеза, позволило превзойти потребность реагирующих с кислородом веществ в океанах и земной коре, так что оставшийся кислород стал накапливаться в атмосфере. А в присутствии свободного кислорода прекратилась потеря воды. Дело в том, что кислород взаимодействует с большей частью водорода, выделяющегося при расщеплении воды, в результате чего вновь образуется вода, пополняющая океаны. Крупнейший ученый и автор гипотезы Геи Джеймс Лавлок считает, что сегодня скорость выделения водорода в космос составляет около 300 тыс. тонн в год. Это эквивалентно потере 3 млн тонн воды. Возможно, цифра жутковатая, но из расчетов Лавлока следует, что при такой скорости испарения за 4,5 млрд лет Земля потеряет всего 1% океанской воды. Этой защитой мы обязаны фотосинтезу. Даже если на Марсе или Венере когда-то существовала жизнь, можно однозначно утверждать, что эта жизнь не изобрела фотосинтез. Без преувеличения можно сказать, что своим существованием на Земле мы полностью обязаны раннему изобретению фотосинтеза и быстрому вливанию кислорода в атмосферу за счет действия биологических катализаторов.


И этой книге я не буду рассказывать о том, как на Земле зародилась жизнь. Те, кому это интересно, могут прочесть труды Пола Дэвиса, Грэхэма Кернс-Смита и Фримана Дайсона, перечисленные в разделе «Дополнительная литература». Мы будем исходить из предположения, что жизнь зародилась в океанах Земли, окруженной атмосферой азота и углекислого газа, но лишь со следами кислорода. Вероятно, фотосинтез был изобретен рано. О том, как и почему это произошло, мы поговорим в главе 7. Теперь давайте посмотрим, как жизнь отреагировала на рост концентрации кислорода в воздухе. Стало ли загрязнение атмосферы кислородом причиной массового исчезновения живых организмов, как считали Линн Маргулис и другие ученые, или стимулировало внедрение эволюционных инноваций? Остались ли какие-то следы тех древнейших событий, которые позволили бы нам поддержать ту или иную версию?

Первый шаг в этом направлении исследований в 1960-х гг. сделал Престон Клауд, один из пионеров в области геохимии. Даже несмотря на значительный прогресс в этой области науки, его труды и взгляды до сих пор оказывают значительное влияние на последователей. Клауд утверждал, что важнейшие события в ранней эволюции были связаны с изменениями содержания кислорода в атмосфере. Каждый раз, когда концентрация кислорода повышалась, жизнь расцветала по-новому. Клауд предложил три критерия для доказательства этой гипотезы: нужно точно знать, как и когда изменился уровень кислорода; нужно показать, что в это же время произошли адаптационные изменения; нужно найти реальные биологические связи между изменением концентрации кислорода и эволюционной адаптацией.

В трех следующих главах мы посмотрим, насколько справедлива гипотеза Клауда в свете современных данных.


Рис. 1. Геологическая временнáя шкала от момента возникновения Земли (4,6 млрд лет назад) до настоящего времени. Обратите внимание на невероятную протяженность докембрийского периода. Первые растения и животные появились во время кембрийского взрыва 543 млн лет назад. Динозавры исчезли примерно 65 млн лет назад

Для упрощения задачи мы разделим историю Земли на три неравные части (рис. 1). Первая часть — докембрий, долгий период затишья до появления каких-либо видимых палеонтологических доказательств существования жизни, за исключением самых ранних многоклеточных форм жизни уже в самом конце этого периода. Потом произошел кембрийский взрыв, когда множество многоклеточных существ возникло неожиданно, как Афина из головы Зевса; от этого осталось множество свидетельств в виде окаменелостей уже полностью оформленных и покрытых броней (раковинами) существ. Наконец, пришла «современная» эпоха фанерозоя, характеризующаяся появлением наземных растений, животных и грибов, когда друг за другом стали возникать трилобиты, аммониты, динозавры и млекопитающие. Все условия, необходимые для активной эволюции многоклеточных форм жизни, сформировались уже в докембрийском периоде. Таким образом, глава 3 будет посвящена анализу докембрия, а главы 4 и 5 — соответственно кембрийскому взрыву и фанерозойскому эону.


Глава третья. Бесконечная тишина. Три миллиарда лет эволюции микробов


Человеку, привыкшему измерять время десятилетиями или столетиями, практически невозможно охватить разумом такой невероятно протяженный отрезок времени, который отделяет нас от докембрийской эпохи. Речь идет о 4 млрд лет, что составляет 9/10 всего времени существования Земли. Представьте себе, что мы переносимся во времени назад со скоростью тысяча лет в секунду. Через две секунды мы окажемся во времени, когда родился Христос, через десять секунд — в период зарождения сельского хозяйства, через полминуты увидим первых пещерных художников, а меньше чем через две минуты сможем пронаблюдать за расселением наших обезьяноподобных предков по африканским саваннам. Если продолжать движение, то через 18 часов мы станем свидетелями катастрофы, уничтожившей динозавров, а через четыре дня сможем присутствовать на спектакле «Многоклеточная жизнь времен кембрийского взрыва». Но после этого наше путешествие будет продолжаться в тишине. Через 44 дня мы окажемся в той точке, когда на Земле каким-то таинственным образом зародилась жизнь, и, наконец, через 53 дня станем свидетелями конденсации Земли из облака пыли и газа.