Книга Бытия. Общая история происхождения — страница 13 из 36

Эта теория немедленно получила единодушное признание, поскольку обладала колоссальной предсказательной силой. С самого момента своего появления в 1960-е годы она предсказывала существование некоторых новых элементарных частиц, регулярно с тех пор открываемых, и давала возможность с огромной точностью рассчитывать новые физические величины, которые, когда их удавалось измерить, оказывались в полном согласии с предсказанием, с точностью до десяти значащих цифр совпадающими с вычисленным значением.

Архитравом Стандартной модели служит объединение слабого и электромагнитного взаимодействий, ставших теперь двумя разными проявлениями одной и той же силы – электрослабого взаимодействия.

И все это опять-таки было следствием определенной симметрии. Первым о ней заговорил Энрико Ферми, едва только отметивший свое тридцатилетие. Благодаря своей интуиции он распознал в странностях казавшегося маргинальным явления – излучения электронов при распаде некоторых радиоизотопов – какое-то новое фундаментальное взаимодействие. Ферми предположил, что между этим новым взаимодействием и электромагнетизмом есть изрядная формальная аналогия, и воспользовался этой аналогией, чтобы описать новое взаимодействие и вычислить его константу связи.

Многие годы его так и называли: “взаимодействие Ферми”. Название сменилось только много позже, чтобы подчеркнуть малость этой самой константы связи G, определяющей интенсивность взаимодействия, и это она в честь своего первооткрывателя стала носить его имя – “константа Ферми”.

Революционная идея молодого физика открыла путь тому самому объединению электромагнитных сил со слабым ядерным взаимодействием, которое тридцать лет спустя легло в основу Стандартной модели фундаментальных взаимодействий.

В 1865 году Джеймс Клерк Максвелл опубликовал уравнения, ставшие фундаментом для теории, которая объединила электрические и магнитные явления: так возник электромагнетизм. По прошествии века история повторилась. В конце шестидесятых годов прошлого века появилась новая теория стараниями Стивена Вайнберга, Шелдона Глэшоу и Абдуса Салама, при определяющем вкладе Герарда Хоофта. Электромагнетизм и слабые взаимодействия оказались проявлениями одного и того же поля, и с тех пор их стали называть электрослабыми.

В 1983 году Карло Руббиа открыл предсказанные теорией векторные бозоны W и Z, и это стало окончательным триумфом Стандартной модели.

Но под пеленой успеха скрывалась глубокая трещина, внутренняя слабость теории, которая в любой момент могла обернуться переламыванием архитрава и крушением всего здания.

Ее обнаруживал один простой вопрос: как могло случиться так, что два взаимодействия, столь различные между собой, оказывались проявлениями одного и того же поля? Радиус действия электромагнитного взаимодействия бесконечен, тогда как слабое взаимодействие проявляется только на крошечных внутриядерных расстояниях. Один из общих законов физики гласит, что радиус какого-либо взаимодействия обратно пропорционален массе переносящей его частицы. Масса фотона равна нулю, и поэтому в электромагнитное взаимодействие могут быть вовлечены частицы, сколь угодно далекие одна от другой. Напротив, бозоны W и Z очень массивны, в 80–90 раз тяжелее протона, и у них радиус действия очень мал. Слабое взаимодействие возможно только внутри ядер, и потому мы смогли узнать о его существовании только совсем недавно.

Но в таком случае как же может фотон, не имея массы, переносить то же электрослабое взаимодействие, что и бозоны W и Z? Что отличает бозоны W и Z от фотона? Что в точности мы называем массой?

Красота нарушенной симметрии

Коммуна Кастельфранко-Венето – одно из многих тайных сокровищ Италии. Здесь сохраняется изначальная структура: города-крепости, выросшего за стенами, которые его защищали. В центре города, как и полагается, стоит дуомо – красивое неоклассическое здание. Это церковь умеренных размеров – в ней нет ничего напоминающего большую базилику. Но дух захватывает, стоит только зайти внутрь и пройти к часовне Костанцо, справа от пресвитерия. Над алтарем возвышается “Мадонна Кастельфранко” Джорджоне – шедевр художника, родившегося в этом городе, чей родной дом на площади неподалеку до сих пор открыт для посетителей.

Джорджо Барбарелли, таково его настоящее имя, прожил короткую жизнь, но оставил миру незабываемые произведения. Ему было всего двадцать пять лет, когда в 1503 году он начал писать “Мадонну Кастельфранко” по заказу Туцио Костанцо, кондотьера из Мессины, нанятого Светлейшей Республикой Венецией возглавить ее армию. Образ Мадонны был нужен Костанцо для алтаря часовни, где покоился его сын Маттео, скончавшийся от малярийной лихорадки в возрасте двадцати трех лет недалеко от Равенны во время одной из военных кампаний.

Джорджоне сделал выбор в пользу разрыва с традицией. Все великие до него – от Пьеро делла Франческа до его собственного учителя Джованни Беллини – располагали персонажей в центре идеальной композиции, благородно играющей с перспективой и намекающей на линии, вдоль которых в церкви были развешаны картины. У Джорджоне мы видим статичную пирамидальную структуру, на вершине которой располагается Мадонна с младенцем, но открытая вовне перспектива сохранена. Высокий, сверхъестественный, почти метафизический трон выделяется на фоне пейзажа с холмами и деревенскими постройками, мучительно-сладостного, проникнутого мягким светом. И в фигурах, и в красках фона ясно торжество венецианской тональной живописи, мазка, отличающего венецианских художников от флорентийцев, той самой “живописи без рисунка” (pittura senza disegno), о которой писал Джорджо Вазари в своих “Жизнеописаниях”. Искусная техника наложения красок используется, чтобы, окружая все линии приглушенными полутенями, избежать каких-либо резких переходов от света к тени.

У картины двойная осевая симметрия: между верхом и низом и между правой стороной и левой. Большое панно темно-красного вельвета служит границей земного мира, с его правильно упорядоченным, выложенным плиткой полом, на котором установлено основание трона и стоят по бокам две фигуры. Сверху – небесный мир, возвышающийся над спокойным пейзажем, и в его центре фигура Богоматери.

Совершенная симметрия в верхней части нарушается фигурой младенца на правом колене Богоматери, погруженного в раздумья о своей судьбе. Внизу две фигуры в схожих позах расположены идеально симметрично относительно средней линии картины, они обе смотрят прямо в глаза рассматривающего картину, словно затягивая его внутрь, но контраст между ними огромен. Справа – святой Франциск в скромной монашеской рясе, в которой он пришел налегке и безоружным в Думьят с предложениями о мире султану Египта аль-Малику аль-Камилю. Слева – напротив, в сияющих блестящих латах святой Никасий, монах-рыцарь ордена госпитальеров святого Иоанна Иерусалимского. Будучи крестоносцем, он сражался за Святую землю, попал в плен в битве при Хаттине и был обезглавлен в присутствии Саладина, дяди султана, мирно беседовавшего годы спустя со святым из Ассизи. Никасий держит в руке копье со штандартом крестоносцев, защитников Иерусалима, с начертанным крестом, который скоро станет символом кавалеров Мальтийского ордена, а поддерживающая его пика окончательно и бесповоротно нарушает на картине всякую симметрию: вторгаясь в сферу небесного, она нарушает разделение на два мира, ее агрессивной диагональю ломается вертикальный порядок композиции. Вот так в одной картине с абсолютным мастерством показана нарушенная симметрия, делающая эту картину шедевром и красоты, и новизны.

Очарование нарушенной симметрией можно найти во многих художественных произведениях. Регулярный ритм совершенной симметрии и успокаивает, и умиротворяет, но есть риск, что он станет скучным, перестанет вызывать эмоциональный отклик, потому что из него уйдет спонтанность, а нарушение порядка беспокоит, но при этом и возбуждает любопытство, оно подталкивает нас к выходу из зоны определенности и к попыткам выяснить, куда может завести это нарушение равновесия. Какое-то мгновение мы колеблемся в страхе: куда нас заведет эта новизна? Какие риски несет она с собой? Но художник нас успокаивает и возвращает к хорошо известной конструкции. Так же, следя за главной темой симфонии, мы боимся потерять ее в вариациях и успокаиваемся только тогда, когда узнаем ее в умиротворяющих объятьях финала. Все это знакомые приемы, использованные с величайшим мастерством знаменитыми художниками или гениальными музыкантами вроде Баха или Моцарта. В создаваемом ими напряжении секрет непревзойденного очарования великих шедевров, от наклона Пизанской башни до асимметричной и интригующей улыбки Моны Лизы, до скульптур Арнальдо Помодоро из позолоченной бронзы, наконец, – этих полированных и совершенных сфер, словно рожденных самой математической магией, которые он пронзает и разрывает, чтобы показать их страдающее нутро.

Если нарушение симметрии в художественном поле – свободный творческий акт, вызывающий удивление и восхищение, то почему бы и природе не поддаться тому же искушению?

Чтобы лучше понять, какую роль играет спонтанность в симметричных структурах физики, воспользуемся примером из механики: представим карандаш, стоящий на своем остром кончике на плоской поверхности. Его начальное положение совершенно симметрично. Карандаш может поворачиваться вокруг своей оси, и законы физики для него не изменятся, потому что гравитационное поле симметрично относительно поворотов вокруг его оси. И значит, падая на плоскую поверхность, карандаш может принять любое направление. Его симметричное состояние нестабильно, и, как только его предоставят самому себе, он упадет. Лежа на горизонтальной поверхности, он будет в стабильном состоянии, но вращательная симметрия окажется нарушенной, так как он выбрал какое-то одно из возможных направлений. Падая на поверхность, карандаш потерял энергию и симметрию, но приобрел стабильность и множественность состояний.