Первая характеристика космического микроволнового фонового излучения – очень высокая однородность. У него спектр излучения абсолютно черного тела, очень слабого, соответствующего температуре Вселенной в 2,72 градуса выше абсолютного нуля. Правильным было бы предположить, что Вселенная ведет себя как огромная и совершенно изолированная печь. Реликтовые фотоны, разлучившись с веществом, продолжали охлаждаться миллиарды лет, но все еще помнят о своем тепловом равновесии с ним, в котором находились на протяжении трехсот восьмидесяти тысяч лет. Поток излучения однороден по всем направлениям, но есть крошечные области, характеризующиеся очень небольшими отклонениями температуры – и они демонстрируют очень специфическую структуру.
Эти неоднородности, или анизотропия распределения температуры, изучены в мельчайших подробностях, поскольку они содержат ценную информацию о том, что происходило в первые мгновения жизни Вселенной. Они, как записки между камнями Стены Плача, могут рассказать нам истории и секреты давнего прошлого. Они следы, впечатанные в потоке фотонов квантовыми флуктуациями, вакуумной пеной, пузырьки которой были безмерно раздуты инфляцией. Бесконечно малые области пространства и промежутки времени расширились до объемов, легко вмещающих скопления галактик. В психоделических небесах, которые воссоздаются самыми современными экспериментами, вроде миссии космической обсерватории “Планк”, завершенной в 2013 году, царство квантовой механики расширяется до межгалактических масштабов.
Старый предрассудок, будто теории Планка и Гейзенберга способны объяснять только поведение бесконечно малых частиц, окончательно отвергнут наблюдательными данными. Космическое микроволновое фоновое излучение представляет собой ясную и хорошо читаемую карту плотности вещества в момент его расставания с излучением. Каждый скачок температуры, как бы мал он ни был, может быть связан с неоднородностью плотности вещества в тот момент, когда фотоны подверглись своему последнему рассеянию, когда они навсегда с веществом расстались. Эта карта дает нам возможность увидеть гигантскую космическую паутину, вдоль нитей которой выстроились первые семена будущих галактик.
Подробно анализируя распределение малых неоднородностей и их размеры, удается добыть очень важную информацию о геометрии Вселенной.
Замкнутая или открытая Вселенная особенным образом искривила бы изображения столь удаленных объектов, потому что в этом случае фотоны распространялись бы по сходящимся или расходящимся траекториям. А из размеров и угловых распределений этих неоднородностей следует недвусмысленное подтверждение того, что наша Вселенная плоская. Это же, в свою очередь, указывает на то, что плотность материи очень близка к критическому значению. Космическое микроволновое фоновое излучение дает, таким образом, еще одну возможность убедиться, что в нашей Вселенной есть и темная материя, и темная энергия, причем в соотношении, которое мы сегодня можем точно установить. Самые последние данные говорят, что Вселенная на 68 % состоит из темной энергии и на 27 % – из темной материи; лишь 5 % приходятся на обычное вещество.
С помощью компьютерной симуляции эффектов искажения изображений, вызываемых искривлениями пространства-времени темной материей, можно построить карту ее распределения. Эффект гравитационных линз дает нам возможность построить даже трехмерное распределение темной материи во Вселенной. Подробное знание того, каким образом устроена эта тонкая космическая паутина, позволяет нам лучше понять механизмы формирования первых звезд и первых галактик.
Количественный анализ распределения первичных температурных флуктуаций в космическом микроволновом фоновом излучении представляет одно из наиболее надежных подтверждений теории инфляции. И все же в скором времени ожидаются новые, еще более полные результаты, связанные с измерениями его поляризации.
Поляризация излучения показывает, есть ли у электромагнитных колебаний какое-то преимущественное направление. Это то же самое явление, которое обеспечило успех солнцезащитным очкам фирмы Polaroid. Солнечные лучи, например, отразившись от поверхности воды, становятся поляризованными, то есть электромагнитное поле после этого колеблется только в горизонтальной плоскости. Если использовать вертикальный фильтр, молекулы в котором расположены так, чтобы пропускать только те волны, где электрический вектор колеблется в вертикальном направлении, раздражающие глаз блики от воды будут подавлены. Поляризационные линзы делаются из стекла или пластика с поляризационными молекулами внутри, благодаря чему проходящий через них свет будет избавлен от большей части бликов и других дефектов.
Космическое микроволновое фоновое излучение поляризовано взаимодействием с материальной средой и поэтому несет в себе дополнительную информацию об истории космоса. Оно хранит в себе что-то еще о последнем контакте излучения с веществом. Типы линейной поляризации могут быть связаны с плотностью вещества, снабжая нас, например, новыми деталями о распределении темной материи в момент расставания излучения с веществом.
Современные эксперименты позволили измерить эту слабую поляризацию, обнаруживая важные обстоятельства. Наиболее желанный тип поляризации, который тем не менее найти до сих пор не удается, – круговая. Она могла возникнуть в результате взаимодействия фотонов с первичными гравитационными волнами. Это особенно слабый эффект, поляризация еле заметная, и к тому же ее скрывают схожие эффекты, возникающие при прохождении излучения через межгалактическую пыль. Настоящий кошмар для физиков-экспериментаторов!
Если бы удалось идентифицировать след последней встречи фотонов с гравитационными волнами, это был бы несомненный отпечаток инфляции. Эта странная поляризация, поиски которой ведутся уже не первое десятилетие, может оказаться ключиком к шкатулке со все еще скрытыми от нас секретами инфляционной фазы. С ее помощью мы могли бы, например, установить уровень энергий первых квантовых флуктуаций спустя какие-то ничтожные доли секунды после Большого взрыва.
Чтобы лучше понять инфляцию, ученые могут воспользоваться и другими стрелами из своего колчана. А чтобы лучше описать различные варианты скалярных полей, которые могли ее запустить, было бы хорошо с еще большей точностью пронаблюдать крупномасштабную структуру молодых галактик. Их распределение должно было бы следовать вдоль крошечных флуктуаций инфлатонного поля, оставленных в космическом микроволновом фоновом излучении во время инфляционного расширения. Необходимо будет собрать максимально полный каталог молодых галактик, то есть наблюдать за галактиками, наиболее удаленными от нас, пока еще находящимися в стадии формирования, и это предлагается в качестве нового поколения экспериментов, которые скоро будут проводиться в открытом космосе. С помощью космологических нейтрино и реликтовых гравитационных волн, которые рано или поздно будут обнаружены, секреты инфляции должны быть быстро раскрыты, если только нас не ждет новый сюрприз, вроде еще какой-нибудь скалярной частицы, обнаруженной Большим адронным коллайдером.
Между тем мы уже достигли конца четвертого дня. Прошло триста восемьдесят тысяч лет от Большого взрыва, и Вселенная вступила в очень интересный возраст: ее ждет цепь трансформаций, заканчивающихся рождением первой звезды. Части вещества предстоит реорганизоваться по-новому, оно станет бурлящим и переменчивым и осветит Вселенную, превратив ее в волшебное зрелище, доступное даже нашим глазам, таким ограниченным в своих возможностях восприятия. В гигантских тиглях, зажегшихся в недрах звезд, образуются тяжелые элементы, которым суждено будет породить еще одну форму скопления вещества, более спокойную и мирную, – планеты. Там вещество продолжит свои трансформации, образуя камни, воздух, воду, растения и животных, в том числе и нас. И если нас приводит в восторг мысль, что мы в буквальном смысле слова дети звезд, то мы должны признать, что, кроме того, мы еще и внучатые племянники тех самых квантовых флуктуаций, раздутых инфляцией, без которых звездам было бы не зажечься.
День 5Зажигается первая звезда
Едва только началась эпоха вещества, а темп трансформаций еще больше замедлился. До сих пор гравитация, самое слабое из взаимодействий, оставалась как бы не при деле. А теперь она начинает давать о себе знать – сперва деликатно и еле заметно, но уже очень скоро она со всей мощью выйдет на середину сцены.
С разводом вещества и излучения все становится намного яснее. Излучение равномерно распределяется по всему доступному для него пространству, и Вселенная становится прозрачной. Но свечение, характерное для последнего превращения, навсегда исчезло: из-за расширения пространства характерная длина волны фотонов увеличилась настолько, что излучение стало невидимым. Вселенная наполнена им и пока еще очень горячая, но она уже снова устремляется к полной темноте.
Вещество медленно движется под действием силы тяжести, оно стабилизируется в атомах, и появляется огромное облако водорода и гелия. Скрытая во мраке гигантская паутина темной материи, в количествах, уже значительно превосходящих вещество, заволакивает космос.
Мелкие аномалии плотности, дети квантовых флуктуаций, предшествующих инфляции, безмерно растягиваются, и теперь в этих областях что-то происходит. Если бы мы могли видеть, что скрывается за этой темной пеленой, то наблюдали бы медленное, но неуклонное накопление газа. У этих областей неправильная форма и рваная граница, но плотность внутри немного выше средней, поэтому создаваемое ими тяготение приманивает вещество вокруг. Вещества скапливается все больше, и, по мере того как это происходит, его сферическая форма становится все более очевидной.
Процесс идет очень медленно, растягиваясь на сотни миллионов лет. Но, хотя его скорость столь ничтожна, что изменения едва заметны, наступление гравитации не оставляет веществу выхода: ничто не сможет воспрепятствовать ее господству над только что сформировавшейся Вселенной вещества.