Эти удивительные небесные тела, нейтронные звезды и черные дыры, становятся причиной большого числа страшных катастроф, охватывающих целые области “космоса”. Но сегодня их можно изучать с изумительной точностью, мы даже смогли увидеть, как они вошли в столкновение друг с другом, устраивая в пространстве-времени настоящий гравитационный шторм, отзвуки которого мы зафиксировали с расстояния в миллиарды световых лет.
Но чтобы понять, как хаос притворяется космосом, не надо смотреть так далеко. Достаточно понаблюдать с более близкого расстояния за поверхностью нашего Солнца. То, что нам представляется спокойной звездой, мирно наполняющей светом наши дни, вблизи оказывается сложной хаотической системой, образуемой бесчисленными термоядерными всплесками, конвекционными потоками, периодическими колебаниями колоссальных масс и струями плазмы, то тут, то там выбрасываемых сильными магнитными полями. Внутренность нашей звезды представляет собой поле столкновения титанических сил, битвы, длящейся много лет, победитель которой был объявлен заранее – это гравитация. По прошествии нескольких миллиардов лет, по мере истощения ядерного топлива, внутренние слои нашей звезды будут все больше подвергаться сдавливанию и сжатию, а сама она будет все больше разрушаться. Ее центральное ядро сожмется, а в это время внешние слои начнут постепенно расширяться и по очереди достигнут орбит Меркурия, Венеры, Земли, мгновенно испаряя их.
Вот так системы глубоко хаотические могут при взгляде издалека представляться упорядоченными и спокойными. То же относится и к другой крайности возможных наблюдений – в мире бесконечно малого.
Самая гладкая и спокойная из поверхностей при взгляде на нее изблизи немедленно обнаружит беспорядочный танец элементарных компонентов материи, которые флуктуируют, осциллируют, взаимодействуют и превращаются друг в друга в лихорадочном ритме. Кварки и глюоны, из которых состоят протоны и нейтроны, непрерывно меняют свое состояние, взаимодействуют друг с другом и с мириадами окружающих их виртуальных частиц. На микроскопическом уровне материя неукоснительно следует законам квантовой механики, в которых царят случай и принцип неопределенности. Ничто не стоит на месте, все кипит и переливается чрезвычайным многообразием красок и возможных состояний.
Но, обозревая одновременно большое число таких частиц, мы обнаруживаем, что, когда структуры становятся макроскопическими, механизмы, определяющие их динамику, приобретают почти магическим образом регулярность, устойчивость, упорядоченность и равновесие. Суперпозиция большого числа случайных микроскопических явлений, развивающихся во всевозможных направлениях, оборачивается устойчивыми и упорядоченными макроскопическими состояниями.
Наверное, это подходящий случай, чтобы ввести новую концепцию, позволяющую описать наше по-настоящему структурное наблюдение: космический хаос – таков должен быть истинный оксюморон, связывающий между собой эти две сущности Вселенной, состязающиеся и играющие в прятки. Это та игра, которую мы наблюдаем, пытаясь нащупать скрытые тропинки в мире элементарных частиц, но с ней же мы встречаемся, когда следим за тем, что происходит в сердце звезд или необъятных структур вроде галактик или галактических скоплений.
Чтобы понять рождение Вселенной, нам вместе с множеством других надо отбросить предубеждение относительно порядка. Нам предстоит путешествие, единственным проводником в котором может быть воображение, рождающее идеи настолько смелые, что в сравнении с ними самое фантастическое сочинение писателя-фантаста покажется банальным. Нам предстоит путешествие, в котором мы познакомимся с теориями, навсегда меняющими наши представления о мире до такой степени, что в конце его мы сами, возможно, не узнаем в себе тех, кем были раньше.
Пристегните ремни, мы начинаем.
В начале была пустота
Вначале была пустота – таким образом мы сразу дали ответ на труднейший из вопросов: а что было до Большого взрыва? Строго говоря, этот вопрос поставлен неправильно. Как мы скоро увидим, пространство-время выходит на сцену только вместе с энергией и массой, так что не было никакого до, никаких часов, которые бы тикали за пределами Вселенной, тогда еще даже не родившейся. И тем не менее для связности рассказа мы можем проигнорировать эту логическую трудность и перейти к сути.
Признав всю парадоксальность вопроса, а что было до того, как родилось время, мы вообразим себе существование в нуль-пространстве, из которого должно будет появиться все пространство; пусть наша фантазия позволит нам пренебречь тем фактом, что мы материальны и нам нужен воздух, чтобы дышать, и свет, чтобы видеть, – позволит нам вообразить, будто мы уже были там, где не было и следа ни материи, ни энергии, готовясь присутствовать при рождении всего на свете и увидеть его своими глазами.
Перед нами простирается пустота, вакуум, совершенно особая физическая система, которая, несмотря на название, откровенно вводящее в заблуждение, совсем даже никакая не пустота. Законы физики наполняют вакуум виртуальными частицами, что рождаются и исчезают в случайном ритме, принося с собой поля с энергиями, значения которых непрерывно колеблются около нуля. Каждый может взять энергию в долг в огромном вакуумном банке и вести существование тем более эфемерное, чем больше размер долга.
Из этой системы, из этих флуктуаций может родиться вдруг материальная Вселенная, которая поначалу все та же пустота, но в этой пустоте внезапно начинаются волшебные метаморфозы.
Вселенная – гигантская и расширяющаяся
Нам сегодня трудно удержаться от улыбки, когда мы слышим, какими наивными были представления лучших ученых разных эпох до того, как в их распоряжении оказались современные телескопы.
Латинское слово Universum, “Вселенная”, содержит два корня – unus, числительное “один”, и versus, причастие прошедшего времени от глагола verto, “вращать”. Мы используем его для обозначения всего сущего, но его буквальное значение иное: “то, что вращается все вместе в одном направлении”. В нем содержится рудимент представления древних обо всем сущем как о единой и упорядоченной системе тел, пребывающей во вращении. Этот предрассудок объединяет древние представления Аристотеля и Птолемея с более современными моделями Коперника и Кеплера.
С концептуальной точки зрения геоцентрическая и гелиоцентрическая вселенные абсолютно различны. На протяжении почти двух тысяч лет ученые всей планеты непрерывно производили вычисления и рассуждения по поводу движения сфер, гостеприимно приютивших Луну, Солнце, планеты и неподвижные звезды. А потом вдруг вся эта картина мира рухнула.
Выдрать Землю из центра мироздания было совсем не просто. Для общества XVII века это было сильным шоком – культурным, философским, религиозным. С этого момента весь мир стал иным. И все же, если взглянуть на вещи с некоторой временной дистанции, две системы, кажущиеся настолько несовместимыми, что за них проливалась кровь, обнаруживают очень сходную структуру. Обе описывают неизменную стационарную вселенную, идеальную машину, гарантирующую вечную гармонию, неизменное вращение. А приводит ли ее в движение “Любовь, что движет Солнце и светила”[3] или сила гравитации Галилея и Ньютона – суть ее от этого не меняется.
Предрассудок о вечной и неизменной, совершенной и потому не меняющейся ab initio[4] Вселенной дожил почти до наших дней. Удивительно находить его и в первых формулировках релятивистской космологии начала ХХ века.
В 1917 году Альберт Эйнштейн, разрабатывая свою общую теорию относительности и ее следствия, постулировал Вселенную однородную, статическую, пространственно искривленную. Масса и энергия искривляли пространство-время и стремились сжать его в точку, но если в уравнение добавить положительное слагаемое, то это стремление можно скомпенсировать – и система останется в равновесии. Вся современная космология начинается с этого виража. Ради того, чтобы избежать катастрофического финала Вселенной, неминуемого при наличии одной только гравитации, в уравнение вводилась произвольная добавка. Желая поддержать тысячелетний предрассудок о стабильности и неизменности Вселенной, в плену которого Эйнштейн и сам, очевидно, находился, он придумал то, что получило название “космологической постоянной”, то есть положительную энергию пустоты, которая приводит к возникновению все расталкивающей силы в противовес гравитационному притяжению, гарантируя стабильность целого.
Сегодня, когда мы знаем, что во Вселенной сотни миллиардов галактик, нам странно обнаруживать, что в начале двадцатых годов прошлого столетия многие ученые, и в их числе самые выдающиеся умы, все еще полагали мир ограниченным одним только Млечным Путем. Медленные обращения тел этой галактики вокруг ее единого центра хорошо вписывались в представления о Вселенной как о стационарной, гармоничной и упорядоченной системе. Очень скоро новые наблюдения поставят все эти представления под очень большой вопрос, но уже тогда молодой бельгийский ученый благодаря своей гениальной интуиции предвидел радикальный разрыв со старыми теориями.
В 1927 году Жоржу Леметру было тридцать три года, он был католическим священником, с отличием прошедшим курс астрономии в Кембридже и завершавшим свою работу над диссертацией в Массачусетском технологическом институте. Молодой ученый одним из первых понял, что уравнения Эйнштейна могут описывать также динамическую вселенную – систему с постоянной массой, но непрерывно расширяющуюся так, что ее радиус растет с течением времени. Когда он представил свои рассуждения самому ценимому и авторитетному из коллег, приговор Эйнштейна был суров: “Ваши вычисления правильны, но ваша физика отвратительна”[5]