Описание стонущих деревьев у Гарди очень точное, поскольку при естественном ослаблении ветра частота звука падает и он становится похожим на голос скорбящего человека. На мой взгляд, свист тамариска слишком высокий и не похож на стоны – в отличие от казуарины, которая встречается в Австралии. Обвислая крона, состоящая из тонких веточек, издает жутковатый вой, идеальный звук для фильма о доме с привидениями. Натуралист Мел Уорд, который несколько месяцев провел на Большом Барьерном рифе, писал об «убаюкивающей музыке моря и поющих деревьев»[339]. К сожалению, сегодня казуарина почти не встречается в туристических местах, а «кондиционеры, музыка и другие бытовые удобства заглушают, частично или полностью, звуки природы». У меня тамариск вызывает воспоминания о школьных каникулах. Теперь я понимаю, что свистящий звук, ассоциирующийся с поездками на море в детстве, создается ветром, теребящим кусты на морских утесах.
В рукотворных сооружениях ветер может порождать неприятные звуки. Построенная в 2006 г. 171-метровая башня Битхэм в английском Манчестере периодически попадает в заголовки местных газет, поскольку воет от ветра. Однажды звук достиг такой громкости, что помешал съемкам «Улицы Коронации» (Coronation Street), самой длинной мыльной оперы в мире. (Съемочная площадка находится всего в 400 метрах от башни)[340].
С верхнего этажа небоскреба поднимается башенка из стеклянных панелей, установленных на металлическом каркасе. Эта надстройка делает башню самым высоким жилым зданием в Европе, но именно она является источником свиста. При сильном ветре движение воздуха у кромок стеклянных панелей создает вихри. Эти вихри являются следствием беспорядочного изменения давления – точно такие же вихри, только крупнее, трясут самолет. Поскольку звук представляет собой перепад давления воздуха, то эти вихри генерируют звук (то же самое происходит, когда флейтист дует поверх мундштука инструмента). В 2007 г. было найдено временное решение проблемы – покрыть стеклянные кромки слоем пенопласта, предотвращающего образование вихрей. В конце того же года добавили алюминиевую окантовку, которая предотвращает свист при умеренном ветре, однако во время бури здание по-прежнему гудит[341].
Вихри от ветра часто образуются на таких сооружениях, как мосты, ограждения или здания, но звук от них обычно тихий, практически неслышный. Башня Битхэм будила местных жителей, что вызвало поток жалоб в муниципалитет. Для такого громкого звука необходим резонанс. У флейты громкость звучащей ноты усиливает резонанс воздуха внутри инструмента. У башни Битхэм резонанс был обусловлен наличием воздуха в промежутках между множеством параллельных стеклянных панелей[342].
При небольшой скорости ветра звук вихрей, образующихся у кромки стекла, лежит ниже резонансной частоты сооружения и башня молчит. Это обстоятельство указывает на одно из возможных решений проблемы: изменить размер стеклянных панелей и расстояние между ними так, чтобы конструкция не начинала резонировать при сильном ветре. Этот метод позволил устранить свист Сити-спайр-центра в Нью-Йорке. Звук был настолько громким, что управляющим агентам выписали штраф, хотя и на смешную сумму – в 220 долларов[343]. Частота звука была на октаву выше среднего до, и он напоминал звук противовоздушной сирены времен Второй мировой войны. Его источником служили башенки, из которых состоял купол на верхушке здания. Удалив половину башенок, удалось снизить резонансную частоту в два раза – и проблема была решена.
Мой ночной визит в окрестности башни Битхэм начался неожиданно. Лениво бродя по интернету перед сном, я обратил внимание на твиты людей, жаловавшихся, что их разбудил гул. Одно из сообщений, от инженера-акустика, содержало конкретные цифры, 78 децибел в 100 метрах от основания башни, что эквивалентно звучанию саксофона-тенора на средней громкости, если подойти к нему вплотную[344]. Выйдя в сад, я услышал слабый гул. Что это: башня, шум от близлежащей дороги или отдаленный звук вертолета? Я натянул на пижаму верхнюю одежду, схватил диктофон, запрыгнул в машину и поехал в город. Не обращая внимания на холодный зимний ветер, я открыл люк и направил микрофон в ночное небо, чтобы записать гул.
Мне сразу же стало ясно, что именно этот звук я слышал у себя в саду – значит, он преодолел не менее 4 километров по городу. В то же время сильный ветер мешал получить качественную запись. Порывы ветра создавали вихри вокруг микрофона; процесс, заставлявший башню петь, портил мою запись. Я прикрыл верхушку микрофона пенопластовым козырьком, чтобы решить проблему, но при таком сильном ветре толку от этого было мало.
Гул усиливался и ослабевал синхронно с порывами ветра. Звук был не слишком приятным – протяжное пение басов музыкального инструмента, отчетливый тональный звук на частоте 240 Гц (примерно нота си ниже среднего до). Нота явно выделялась на фоне шума транспорта, и, наверное, именно поэтому звук так раздражал горожан. Нашему слуху трудно не обращать внимания на звуки, которые попадают в речевой диапазон, поскольку они могут нести полезную информацию. Даже гласные в нашей речи часто произносятся напевно, на одной ноте. Знание этого факта позволило звукорежиссерам «Улицы Коронации» найти выход из трудного положения. Добавив к звуковой дорожке тихий шум с широким частотным диапазоном – для этого прекрасно подходит отдаленный гул оживленной улицы, – они замаскировали гудение звуками, которые не привлекают внимания слушателя.
Однако, подобно тому как бурчание песка служит только отправной точкой звука, свист ветра среди стеклянных кромок на башне Битхэм – это лишь начальный импульс. Звуки, издаваемые и песком, и ветром, требуют усиления. Механизм усиления звука в дюнах до сих пор неясен. Согласно одной из теорий, все дело в слое сухого сыпучего песка толщиной около 1,5 метра поверх более плотного материала внизу.
Натали Вренд объяснила мне, что гипотеза двух слоев принадлежит руководителю ее докторской диссертации, Мелани Хант из Калифорнийского технологического института. Чтобы проверить теорию Хант, Натали провела полевые измерения на разных дюнах на юго-западе США. Для выявления глубинных структур она обратилась к геофизике, применив георадар и сейсмическое оборудование. Она также использовала бур диаметром 1 сантиметр, чтобы взять образцы песка. Бур легко преодолевал первые 1,5 метра песка, но потом земля становилась твердой как бетон: «Мы поручили работать с буром самому большому и мускулистому парню; он изо всех сил бил по нему молотком, но не мог проникнуть глубже»[345]. Образец верхней части этого очень твердого слоя показал, что песчинки спаяны вместе углекислым кальцием, что создает непроницаемый для звука барьер.
Верхний слой сыпучего песка играет роль волновода для звука – точно так же оптические волокна проводят свет. Осыпающийся песок генерирует разные частоты. Волновод выделяет и усиливает одну определенную ноту. Аналогичным образом, среди стеклянных панелей башни Битхэм ветер генерирует звуки разной частоты. Резонанс воздуха между стеклянными панелями избирательно усиливает отдельные ноты, создавая хорошо слышимый гул.
Тем не менее другие специалисты сомневаются в необходимости двухслойной дюны. Симон Дагуа-Бои вместе с коллегами воссоздал протяжный звук дюны в лаборатории, скатывая небольшое количество песка по наклонной плоскости, изготовленной из толстой тяжелой доски из прессованных опилок, обтянутой тканью. Согласно их теории, песок синхронизируется при осыпании – песчинки сталкиваются друг с другом с одинаковой частотой, превращая вершину дюны в динамик и издавая отчетливо различимую ноту. Однако причина, заставляющая песчинки синхронизироваться, неизвестна. Если эта теория верна, то волновод, обнаруженный Натали Вренд, просто окрашивает звук, а не является его причиной. А возможно, волновод способствует синхронизации песчинок.
В просеивании песчинок музыкальных дюн важную роль играет ветер. Песок горчичного цвета в Келсо резко выделяется на фоне окружающего ландшафта, чахлого кустарника и далеких гранитных гор. Преобладающий западный ветер поднимает песок из русла реки Мохаве в устье каньона Эфтон и несет его в Келсо. Дюны высотой до 180 метров образуются благодаря завихрениям. Песок состоит в основном из зерен кварца, а также более мелких частиц, похожих на пыль. Не меняющий направления ветер просеивает песок таким образом, что все песчинки на подветренной стороне дюны имеют приблизительно одинаковый диаметр, а пыли там почти нет.
Звук, похожий на отрыжку, возникает из-за того, что песчинки имеют округлую форму и одинаковый размер. Вероятно, важную роль в генерации звука играет внешний налет на песчинках. Французский физик Стефан Дуади обнаружил, что его лабораторные образцы песка могут терять голос. Но, если песок промыть водой, а затем высушить при высокой температуре в присутствии соли, голос восстанавливается. Этот процесс приводит к появлению покрытия из оксида железа и кремния на поверхности песчинок, что влияет на трение между ними.
На второй день мы с Дайаной Хоуп вышли из лагеря в Келсо на рассвете, чтобы взобраться на дюну, пока еще не жарко и не поднялся ветер. Это был день летнего солнцестояния, и, когда мы убирали палатки, небо прорезал V-образный луч солнца, пробившийся сквозь вершины близлежащих гор.
Когда я читал статью Натали Вренд о Думонт-Дюнс в Калифорнии, то обратил внимание, что склоны, на которых проводились измерения, были гораздо длиннее, чем те, по которым я скользил днем раньше. В статье также отмечалось, что для пения требуется более крутой склон – около 30 градусов. Поднимаясь на дюну, мы с Дайаной высматривали самый длинный склон со светлым песком, свободный от растительности. В первый день нашей экспедиции мы поняли, что песок с серым оттенком не издает звуков; по нему было легче идти, и он казался не таким сыпучим. Почти у всех поющих дюн звук издает подветренная сторона, поэтому мы направились к гребню, который находился не на вершине дюны, а имел длинный крутой склон, почти перпендикулярный к преобладающему ветру, – совсем не такой, какой мы исследовали вче