Книга звука. Научная одиссея в страну акустических чудес — страница 38 из 50

Первая неожиданность случилась перед тем, как на сцену вышел пианист. Когда двери зала закрылись и свет погас, я испытал странное волнение, даже более сильное, чем на обычном концерте. Современный концертный зал – самое тихое место, которое только можно найти в городе. В Бриджуотер-Холле в Манчестере экскурсоводы любят рассказывать о том, что, когда в 1996 г. в Великобритании была взорвана самая мощная в мирное время бомба, рабочие в зале не слышали грохота, настолько хорошо он изолирован от внешнего мира. Бомба, подложенная Ирландской республиканской армией (ИРА) в центре города, разрушила магазины, выбила практически все стекла в радиусе одного километра и оставила после себя 5-метровую воронку.

Стоит пройти за кулисы современного концертного зала, чтобы увидеть, какая точность требуется для достижения такой звукоизоляции. Экскурсоводы обычно с гордостью рассказывают о том, что зал покоится на амортизаторах. Подобно амортизаторам автомобиля, они не позволяют вибрациям проникнуть внутрь помещения. Если бы колебания земли передавались в концертный зал, то вибрация стен зала привела бы в движение молекулы воздуха, генерируя шум. Все, что связано с залом и может передавать вибрации – электрические кабели, трубы и вентиляционные каналы, – должно тщательно рассчитываться и иметь собственные амортизационные системы. Внимание архитекторов к деталям просто потрясает.

В последние десятилетия новые концертные залы становились все тише и тише, обеспечивая музыкантам и дирижерам максимальный динамический диапазон. В хорошем современном зале общий шум, который производят зрители – они дышат и ерзают на стульях, – громче любого фона, создаваемого внешними звуками или вентиляционной системой[352].

То, что публика слышит при исполнении пьесы «4′33″», зависит от изоляции зала и тишины в аудитории. В том зале, где я слушал концерт, звукоизоляция была не слишком хорошей, и я время от времени слышал, как по соседней улице проезжает автобус. Народу было мало, человек пятьдесят, и я слышал, как они меняют позу и кашляют. Пока исполнялась пьеса, я задумался. Действительно ли все эти звуки меня отвлекают и где тут музыка? Несмотря на присутствие музыканта на сцене, произведение Кейджа смещало фокус от исполнителя к аудитории. И это превращение из пассивного слушателя в активного исполнителя стало для меня вторым сюрпризом. Когда пьеса закончилась, я испытал сильное чувство общего успеха – вместе с музыкантом и остальными слушателями. Публика аплодировала, послышались крики: «Браво!», «Бис!». Меня захватило общее ликование. Мы все вместе только что сделали нечто бессмысленное – или нет?

Тишина часто используется в искусстве, особенно в театре – в частности, такими знаменитыми драматургами, как Гарольд Пинтер и Сэмюэл Беккет. У Пинтера тишина заставляет зрителей представлять, что думают персонажи. У Беккета тишина символизирует бессмысленность и бесконечность существования[353]. В музыке также регулярно используются короткие паузы. Джазовый ансамбль может внезапно умолкнуть на секунду, а через пару тактов продолжить, словно этой паузы никогда не было. Тишина усиливает драматическое напряжение, разрушая ожидания способом, который доставляет удовольствие мозгу.

Представьте музыканта, который подходит к роялю и много раз повторяет фрагмент любимой мелодии. Вскоре эта предсказуемость начнет утомлять. Но мы получаем некоторое удовольствие от случайных звуков, например позволив кошке пробежаться по клавишам рояля. Хорошая музыка не бывает ни полностью повторяющейся, ни абсолютно непредсказуемой. Существует золотая середина, когда регулярная ритмическая и мелодическая структура сочетается с изменениями, поддерживающими интерес слушателя.

Когда вы слушаете музыку, мозг занят решением важной задачи: он пытается определить ритмическую структуру произведения. Простая на первый взгляд задача выявления ритма и притопывания ногой в такт требует взаимодействия нескольких областей мозга, и механизм ее решения пока неясен. По всей видимости, в этом случае активизируются базальные ядра, расположенные в глубине головного мозга, а также префронтальная кора в передней части мозга и другие области, отвечающие за обработку звука[354]. Базальные ядра играют важную роль в выработке моторных команд; при их повреждении в результате болезни Паркинсона пациентам трудно начать движение.

Обрабатывая поток информации, поступающий во время исполнения музыки, мозг постоянно пытается предсказать следующий ударный такт. Прогноз ритма основан на прошлом опыте прослушивания похожей музыки и на предыдущих фрагментах пьесы. Верное предсказание следующего ударного такта доставляет удовольствие, но не менее приятно услышать, как искусные музыканты нарушают устоявшийся ритм, обманывая ожидания слушателей. Один из способов ввести аудиторию в заблуждение – неожиданные паузы, даже очень короткие. Похоже, мозгу нравится подстраиваться под меняющийся ритм[355].

Неожиданная пауза в музыке также передает ответственность за ритм слушателям, потому что они в течение короткого времени должны поддерживать ритм, пока музыканты снова не заиграют. Пауза, подобно пьесе Джона Кейджа, перемещает фокус музыкального исполнения со сцены в зал. Вторым произведением в концерте, на котором исполнялась пьеса «4′33″», была вполне обычная фортепьянная соната Чарльза Айвза, не требовавшая участия публики. Пальцы пианиста стремительно перемещались по клавиатуре, и он, казалось, пытался компенсировать недостаток нот в произведении Кейджа. Соната оставила меня абсолютно равнодушным, и мне снова захотелось услышать тишину.

Звукорежиссеры, сидящие за микшерным пультом, стараются избегать полной тишины в звуковых дорожках фильмов – за одним исключением. В фильме «2001: Космическая одиссея» (2001: A Space Odyssey) Стенли Кубрик не побоялся активно использовать тишину. Если бы режиссер попробовал сделать это сегодня, то получился бы фильм, похожий на «4′33″», и вы услышали бы только, как хрустят чипсами и булькают содовой ваши соседи по кинозалу. Нередко тишина, воспринимаемая публикой, на самом деле является записью «отсутствия звука». Чарльз Динен, отвечающий за аудио в Electronic Arts, описывал мне, как он увлекся тихими комнатами, когда разрабатывал звуковую дорожку для одной видеоигры. Увеличение громкости записей, сделанных в пустых помещениях, открывало «потрясающие потусторонние звуки» и «потрясающий скрип»[356]. Чарльз также рассказывал, что он может взять любой звук, например рев верблюда, обработать его цифровым методом, сместив вниз на несколько октав, и прослушивать в поисках характерных звуков, усиливающих психологическое напряжение. Игроки или зрители фильма могут не замечать этих фоновых звуков, однако они очень важны для эмоционального восприятия сцены.

«Космос, дальняя граница», – объявляет Джеймс Т. Кирк в начале первого эпизода «Звездного пути» (Star Trek). По экрану проплывает звездолет «Энтерпрайз», а голос капитана звучит так, словно он записан в чрезвычайно звучном соборе. Я понимаю, что космос огромен, но откуда там приходят отражения звука? Космос беззвучен, или, как говорилось в фильме 1979 г. «Чужой» (Alien), «в космосе никто не услышит, как ты кричишь». Если космонавту не повезло и он оказался в открытом космосе без скафандра, то кричать в последние мгновения жизни бесполезно, поскольку отсутствуют молекулы, которые передают звуковые волны. Но Голливуд не позволяет такой тривиальной вещи, как физика, влиять на убедительные звуковые дорожки. В последнем фильме серии «Звездный путь» двигатели звездолета «Энтерпрайз» издают могучий рев; не менее впечатляюще выглядят и выстрелы протонных торпед.

Когда я представляю отсеки настоящего космического корабля, то вижу в них людей, безмятежно плавающих в условиях невесомости. В начале 2012 г. я встречался с астронавтом Роном Гараном, который только что вернулся на Землю после полугода работы на Международной космической станции. Он объяснил, что звуковой ландшафт в реальном космическом корабле далек от безмятежного. Даже снаружи, во время выхода в открытый космос (в прошлый раз он провел в открытом космосе шесть с половиной часов), никакой тишины нет. И действительно, тишина может испугать – она означала бы, что перестали работать насосы, подающие воздух в скафандр. Космический корабль изобилует шумными механическими устройствами – холодильниками, кондиционерами, вентиляторами. Теоретически этот шум можно уменьшить, но доставка более тихих и тяжелых устройств на орбиту обойдется гораздо дороже.

Исследования, проведенные во время полета космического челнока, выявили у экипажа временную частичную глухоту. Внутри международной космической станции (МКС) так шумно, что некоторые специалисты опасаются за слух астронавтов[357]. В худших случаях уровень шума на станции во время сна соответствовал шумному офису (65 децибел). В статье в журнале New Scientit сообщалось: «Астронавтам на МКС приходилось все время носить затычки для ушей, но в настоящее время достаточно двух или трех часов в течение рабочего дня»[358]. Необходимость в затычках, даже временная, свидетельствует о враждебности звукового ландшафта на станции. Мягкие пористые затычки способны уменьшить уровень звука на 20–30 децибел. Более высокие уровни двуокиси углерода и загрязнителей воздуха, характерные для невесомости в космосе, также усиливают опасность повреждения внутреннего уха.

В открытом космосе звук отсутствует, в отличие от других планет, и ученые установили микрофоны на космических аппаратах, таких как «Гюйгенс», отправленный к Титану, спутнику Сатурна. Если у планеты или спутника есть атмосфера – какой-либо газ у ее поверхности, – то есть и звук. Микрофоны имеют определенные преимущества по сравнению с другой аппаратурой: они легкие, потребляют мало энергии и могут слышать то, что скрыто от видеокамер. Уверяю вас, в аудиозаписи Титана, сквозь атмосферу которого проходил «Гюйгенс», нет ничего необычного. Звуки напомнили мне о ветре, свистящем в открытом окне автомобиля, который мчится по автостраде. Но если вспомнить о том, где записаны эти звуки – на расстоянии почти миллиарда километров от Земли, – впечатление от них усиливается.