Реле решало это задачу, используя электромагнит для управления переключателем. По сути, реле усиливало слабый сигнал для получения более мощного.
В наши планы не входит использование реле для усиления слабого сигнала. Нас интересует только то, что реле является переключателем, которым можно управлять не вручную, а с помощью электричества. Мы можем соединить реле с переключателем, лампочкой и парой батареек.
Обратите внимание: переключатель слева разомкнут, а лампочка не горит. Когда вы замкнете переключатель, ток из батарейки слева от него потечет по виткам катушки, намотанной на железный сердечник, который приобретет магнитные свойства и притянет гибкую металлическую полоску, что, в свою очередь, приведет к замыканию цепи и включению лампочки.
Когда электромагнит притягивает металлическую полоску, реле считается активированным. После размыкания выключателя железный сердечник теряет магнитные свойства, а металлическая полоска возвращается в исходное положение.
Такой способ зажечь лампочку кажется довольно мудреным, и это действительно так. Если бы мы хотели ограничиться только включением лампочки, мы могли бы обойтись и без реле. Однако перед нами стоит более сложная задача.
В этой главе мы будем часто использовать реле (а после сборки логических вентилей полностью от них откажемся), поэтому хочу упростить схему. Мы можем избавиться от некоторых проводов с помощью земли. В данном примере «земля» — просто общий провод; к реальной земле ничего подключать не нужно.
Понимаю, это не похоже на упрощение, однако мы еще не закончили. Важно: отрицательные контакты обеих батарей подключены к земле.
Так что везде, где нам встретится подобное изображение, заменим его заглавной буквой V (которая означает voltage — «напряжение»), как сделали это в главе 5 и главе 6. Теперь реле выглядит так.
Когда переключатель замкнут, ток между источником питания (V) и землей течет через катушку электромагнита. Это заставляет электромагнит притянуть гибкую металлическую полоску, которая замыкает цепь между источником питания, лампочкой и землей, и лампочка загорается.
На этих схемах присутствуют два источника питания и две земли, однако все источники питания, как и все земли, на приведенных в этой главе схемах могут быть соединены друг с другом. Все схемы, состоящие из реле и логических вентилей, изображенные в этой и следующей главах, допускают использование только одной (хотя и мощной) батарейки. Например, предыдущую схему можно перерисовать только с одним источником питания.
Учитывая то, что мы собираемся делать с реле, эта схема не является достаточно понятной. Лучше избегать замкнутых цепей и рассматривать работу реле, как и в случае с описанным ранее пультом управления, с точки зрения входного и выходного сигналов.
Если напряжение поступает на вход (например, если он соединен с источником питания с помощью переключателя), то активируется электромагнит, и на выходе появляется напряжение.
Ко входу реле не обязательно подключать переключатель, а к выходу — лампочку. Выход одного реле может быть подключен ко входу другого.
Замыкание переключателя активирует первое реле, которое затем подает напряжение на второе. Срабатывание второго реле приведет к включению лампочки.
Соединяя несколько реле, можно конструировать логические вентили.
На самом деле лампочку можно подключить к реле двумя способами. Обратите внимание на гибкую металлическую деталь, которую притягивает электромагнит. В состоянии покоя она касается одного контакта. Когда электромагнит притягивает ее, она касается другого контакта. Мы использовали нижний контакт в качестве выхода реле, однако могли бы применить и верхний. В этом случае выход реле меняется на противоположный, и лампочка загорается при размыкании входного переключателя. При замыкании входного переключателя лампочка гаснет.
Реле такого типа называется двухпозиционным. Оно имеет два электрически противоположных выхода. Когда на одном из них есть напряжение, на другом его нет.
Как и в случае с переключателями, два реле могут быть соединены последовательно.
Выход верхнего реле подает напряжение на нижнее. Как видите, когда оба переключателя разомкнуты, лампочка не горит. Попробуем замкнуть верхний переключатель.
Лампочка не загорается, поскольку нижний переключатель все еще разомкнут, и второе реле не срабатывает. Попробуем разомкнуть верхний переключатель и замкнуть нижний.
Лампочка по-прежнему не горит. Ток до нее не доходит, потому что не сработало первое реле. Единственным способом зажечь лампочку является замыкание обоих переключателей.
Теперь активированы оба реле, и между источником питания, лампочкой и землей течет ток.
Подобно двум соединенным последовательно переключателям, эти два реле решают небольшую логическую задачу. Лампа загорается только в случае срабатывания обоих реле. Такая схема последовательного соединения двух реле называется вентилем И. Для его обозначения на схемах инженеры-электрики используют специальный символ, который выглядит так.
Это первый из четырех основных логических вентилей. Вентиль И имеет два входа (слева на приведенной выше схеме) и один выход (справа). Вам часто будет встречаться именно такое изображение вентиля И — со входами слева и выходом справа. Дело в том, что людям, привыкшим читать слева направо, удобнее изучать электрические схемы также слева направо. Однако входы логического вентиля И можно было бы изобразить вверху, справа или внизу.
Исходная схема с двумя последовательно соединенными реле, двумя переключателями и лампочкой выглядела так.
С использованием символа вентиля И эта же схема принимает следующий вид.
Обратите внимание: символ вентиля И не только используется вместо двух соединенных последовательно реле, но также подразумевает, что верхнее реле подключено к источнику питания и оба реле соединены с землей. Опять же, лампочка загорается только в случае замыкания верхнего и нижнего переключателей. Вот почему эта схема называется вентилем И.
Входы вентиля И не обязательно должны быть соединены с переключателями, а выход — подключен к лампочке. В данном случае мы имеем дело просто с напряжением на входах и выходе. Например, выход одного вентиля И может быть входом второго вентиля И.
Эта лампочка загорится лишь в случае замыкания всех трех переключателей. Только если будут замкнуты верхние два переключателя, выход первого вентиля И активирует первое реле во втором вентиле И. Нижний переключатель активирует второе реле во втором вентиле И.
Если мы выразим отсутствие напряжения в виде 0, а его наличие — в виде 1, то зависимость выходного сигнала вентиля И от входных сигналов будет следующей.
Как и в случае с двумя последовательно соединенными переключателями, работу вентиля И можно описать с помощью небольшой таблицы.
Можно делать вентиль И с более чем двумя входами. Например, вы последовательно соединили три реле.
Лампочка загорится при замыкании всех трех переключателей. Подобная конфигурация обозначается таким символом.
Такая схема называется трехвходовым вентилем И.
Следующий логический вентиль состоит из двух реле, соединенных параллельно.
Важно: выходы двух реле соединены друг с другом. Этот объединенный выход подает питание на лампочку. Для того чтобы лампочка загорелась, достаточно активировать одно из двух реле. Например, если мы замкнем верхний переключатель, лампочка загорится, поскольку получает питание от левого реле.
Аналогично лампочка загорится, если мы оставим верхний выключатель разомкнутым, но замкнем нижний.
Лампочка также загорится при замыкании обоих переключателей.
В данном случае мы находимся в ситуации, когда лампочка загорается при замыкании верхнего или нижнего переключателя. Ключевым здесь является слово или, поэтому данная схема называется вентилем ИЛИ. Для его обозначения инженеры-электрики используют такой символ.
Он несколько похож на символ вентиля И, за исключением закругления стороны входов. На выходе вентиля ИЛИ есть напряжение, если оно подается на один из двух его входов. Если мы обозначим отсутствие напряжения 0, а его наличие — 1, то вентиль ИЛИ сможет находиться в четырех возможных состояниях.
Результаты работы вентиля ИЛИ можно представить в виде таблицы.
Вентиль ИЛИ также может иметь более двух входов. Выход такого вентиля равен 1, если любой из его входов равен 1; выход вентиля равен 0, если все его входы равны 0.
Ранее я объяснил, что используемые нами реле называются двухпозиционными, потому что их выходы могут быть подключены двумя разными способами. Как правило, при разомкнутом переключателе лампочка не горит.
При замыкании переключателя лампочка загорается.
Кроме того, вы можете использовать другой контакт, чтобы лампочка загоралась при размыкании переключателя.
В этом случае лампочка будет гаснуть при замыкании переключателя. Подключенное таким способом одиночное реле называется инвертором. Инвертор не является логическим вентилем (логические вентили всегда имеют два или более входов), однако он часто оказывается очень полезным и изображается с помощью специального символа.
Данная схема называется инвертором, потому что она инвертирует 0 (отсутствие напряжения) в 1 (наличие напряжения) и наоборот.
Теперь, когда у нас есть инвертор, вентиль И и вентиль ИЛИ, мы можем приступить к созданию пульта управления, который позволит автоматизировать выбор идеальной кошки. Начнем с переключателей. Первый переключатель в замкнутом состоянии соответствует кошке, в разомкнутом — коту. Так мы сможем генерировать два сигнала, которые обозначим Ж и М.
Ж равно 1, М равно 0, и наоборот. Аналогично второй переключатель соответствует стерилизованной кошке в замкнутом состоянии, нестерилизованной — в разомкнутом.
Со следующими двумя переключателями дело обстоит чуть сложнее. Различные комбинации должны соответствовать четырем разным цветам. Вот два переключателя, подключенных к источнику питания.