Коллайдер — страница 3 из 49

Вдохновившись триумфом Максвелла, обвенчавшего электричество и магнетизм, многие физики решили выступить в роли сводников для других сил. Как хороший хозяин старается на празднике наладить отношения между гостями, так и ученые, пытаясь установить связи, сделали ставку на поиск общего. Могут ли все четыре взаимодействия описываться одной системой уравнений?

На сегодняшний день самым крупным продвижением в этом направлении является сплав электромагнетизма и слабых сил, совершенный независимо друг от друга американскими физиками Стивеном Вайнбергом и Шелдоном Глэшоу и пакистанским физиком Абдусом Саламом. Объединенное взаимодействие получило название электрослабого. На пути к нему встретился, однако, далеко не один подводный камень.

В частности, серьезную проблему представлял широкий разброс в массах переносчиков каждой из сил. У фотонов нулевая масса, в то время как частицы, ответственные за слабое взаимодействие, довольно тяжелые. Из-за этого, кстати, радиус действия слабых сил гораздо короче. Чтобы лучше почувствовать разницу между электромагнитными и слабыми переносчиками, представьте себе, что вы сначала выполняете подачу мячом, легким, как пушинка, а потом вам дают свинцовый шар для боулинга. Он, конечно, вряд ли долго задержится в воздухе и камнем рухнет на пол. Разве можно назвать честным состязание между силами, поставленными в столь неодинаковые условия?

Тем не менее иногда неравенство возникает из имевшей место гармонии. Симметрия, бывает, рушится, и коллекционеры древних скульптур хорошо это знают. Могло так случиться, что ранняя Вселенная в течение считаных мгновений после ослепительного Большого взрыва, положившего ей начало, недолго пребывала в состоянии гармонии. Все силы находились в идеальном равновесии, пока что-то не нарушило этот баланс масс. И тогда одни переносчики стали тяжелее других. Так, может быть, сегодняшний разброс в силе взаимодействий явился результатом какого-то вездесущего процесса, разрушающего симметрию?

В 1964 г. британский физик Питер Хиггс предложил элегантный механизм для объяснения спонтанного нарушения первоначальной симметрии Вселенной. Этот механизм постулирует наличие особой сущности, так называемого поля Хиггса, которое пронизывает весь Космос, устанавливая фундаментальный масштаб энергии. (Поле математически описывает, как свойства силы или частиц меняются от точки к точке.) Оно содержит в себе своего рода стрелку, или фазовый угол, которая может указывать на любую точку окружности. При невероятно высоких температурах, сопровождавших момент рождения Вселенной, положение стрелки размыто. Она ведет себя наподобие быстро вращающейся рулетки. Но когда температура падает, колесо рулетки встает как вкопанное, и стрелка останавливается в случайном месте. В итоге изначальная симметрия поля Хиггса, не отдававшего предпочтение ни одному из углов, спонтанно нарушается путем выбора одного конкретного угла. А поскольку полем Хиггса определяется вакуумное состояние Вселенной (состояние с наименьшей энергией), нарушение симметрии неизбежно влечет за собой превращение так называемого ложного вакуума (наименьшая энергия не равна нулю) в истинный (с нулевой энергией). Из знаменитого завета Альберта Эйнштейна Е = тс 2 (энергия равна массе, помноженной на скорость света в квадрате) тогда следует: полученная энергия - все равно что масса, которая и распределяется между разными элементарными частицами, включая переносчиков слабого взаимодействия. Одним словом, останавливаясь, хиггсовская «рулетка» придает массу частицам, в том числе отвечающим за слабые силы, и последние становятся тяжелее, хотя фотон по-прежнему не имеет массы. За его удивительную способность снабжать массой другие частицы «хиггс» прозвали «божественной частицей».

Если механизм Хиггса верен, от соответствующего поля должна была остаться своя элементарная частица. Из-за ее массы, которая больше чем в сто раз превосходит массу протона, сидящего в ядре водородного атома, ее можно надеяться увидеть только в бурных процессах, какими являются высокоэнергетические столкновения частиц. Но после десятков лет поисков этот ключевой ингредиент электрослабой теории пока так и не найден. Как-то незаметно неуловимая божественная частица превратилась в святой Грааль современной физики.

Если забыть про ненайденный «хиггс», теория электрослабого объединения успешно доказала свое право на существование. Ее значение так велико, что ее даже называют Стандартной моделью. Однако, к большому разочарованию всего физического сообщества, попытки объединить электрослабое взаимодействие с оставшейся парой сил плодов до сих пор не принесли.

Теории электрослабых и сильных взаимодействий удается по крайней мере сформулировать на одном и том же языке - в терминах квантовой механики. Разработанная в 20-х гг. прошлого века, квантовая механика оказалась мощным инструментом для описания природы на субатомных расстояниях. Но хотя она точно предсказывает средние для различных физических процессов, для того же рассеяния (соударения и разлета двух и более частиц) или распада, ее неотъемлемым свойством является неопределенность, с которой трудно свыкнуться. Как бы мы ни пытались докопаться до точного хода физических событий, происходящих на субатомных масштабах, в лучшем случае нам остается бросать монетку или играть в кости. Эйнштейн так и не смог смириться с тем, что приходится делать ставки, хотя, казалось бы, все должно быть кристально ясно и без них. Он провел остаток своей жизни, пытаясь построить взамен новую теорию. Однако квантовая механика, подобно молодому Моцарту, гениальному, но дерзкому, представила на наш суд столько изумительных симфоний, что на ее шалости закрыли глаза.

Физикам, дорожащим точностью, не мог не полюбиться шедевр самого Эйнштейна - общая теория относительности. Она объясняет гравитацию во всех деталях и, в отличие от теорий остальных взаимодействий, дает не вероятностное, а детерминированное описание. Кроме того, в теории Эйнштейна пространство и время оставили свою роль фоновых координат и стали полноправными участниками физических процессов. Ученые не опускают рук, но пока нет общепринятого способа примирить гравитацию и квантовую механику. Это как пытаться настроить на победу команду, отправляющуюся на олимпиаду по лингвистике, и вдруг обнаружить, что один из четырех игроков, признанный эксперт в своей области, говорит на никому не понятном языке.

У ученых куда-то затерялся один из элементов мозаики. Из четырех фундаментальных взаимодействий два, слабое и электромагнетизм, явно подходят друг к другу. Сильное взаимодействие тоже не выглядит третьим лишним, но еще никто до конца не знает, с какой стороны его пристроить. А вот гравитация будто попала сюда совсем из другой коробки. Как же нам воссоздать первоначальную симметрию Космоса?

Современной физике известны и другие случаи асимметрии. Так, например, разница в количестве материи и антиматерии (она напоминает материю, но противоположно заряжена) - первой во Вселенной намного больше. Или существенные различия в поведении фермионов (из них состоит материя) и бозонов (они переносят взаимодействия). Как Монтекки и Капулетти, фермионы и бозоны принадлежат к разным семьям со своим набором традиций. Собираясь вместе, они ведут себя по-разному: фермионам всегда нужно больше места. Попытки примирить два семейства привели к гипотезе великого вселенского союза под названием суперсимметрия. Она требует, чтобы у каждого члена одной семьи был родственник в другой. Эти суперсимметричные пары, возможно, помогут решить одну из главных астрономических головоломок: почему галактики двигаются так, будто в них больше массы, чем нам кажется? Может быть, вся или почти вся темная материя состоит из этих самых суперсимметричных частиц? В любом случае, их никто никогда не видел, и ученым еще предстоит их найти.

Такие нестыковки и парадоксы раззадоривают человеческий ум. Нам хочется услышать от науки полноценный рассказ, а не прерываться на самом интересном месте. Если нам по-прежнему не ясно, чем все закончится, наверное, стоит подключить фантазию, хотя вот физикам-теоретикам на фантазию жаловаться не приходится. За любой научной загадкой увивается целый рой возможных объяснений, правдоподобных и не очень.

Особенно поражают воображение сравнительно недавние теоретические изыскания, в которых предлагается заменить элементарные частицы вибрирующими энергетическими нитями или мембранами. Первыми занимается теория струн, а вторыми - М-теория. Привлекая суперсимметрию или дополнительные измерения вдобавок к обычным пространству и времени, в рамках этих схем теоретики дают красивое объяснение некоторым различиям между гравитацией и остальными взаимодействиями. Новые теории удобнее с математической точки зрения: раньше некоторые вычисления, если их провести в отношении точечных частиц, давали бессмысленный результат, а со струнами и мембранами конечных размеров эти проблемы исчезают. Общеизвестно, какие большие трудности возникают при попытках расширить Стандартную модель и таким образом построить теорию всех взаимодействий. Поэтому неудивительно, что многих выдающихся ученых привлекла математическая элегантность новаторских теорий. Вайнберг, например, однажды заметил: «Кроме струн нам положиться не на что»2.

Есть у струнной и М-теорий и противники. Они подвергают сомнению физическую состоятельность новых подходов, содержащих неизвестные величины и требующих скрытых измерений. Во множестве всевозможных комбинаций наш реальный мир представлен какой-то частью, которая, в свою очередь, сама включает массу возможностей. Если в теории достаточно много свободных параметров, утверждают оппоненты, ею можно объяснить практически любую частицу или взаимодействие. Это то же самое, как если бы писатель, решивший уподобиться Диккенсу, накропал бы десятки тысяч страниц сомнительной прозы и поручил бы редактору нарезать из них роман английского классика. Перефразировав знаменитое изречение Трумана Капоте «Это машинопись, а не литература», оппоненты теории струн могли бы сказать: «Это подгонка, а не физика».