В этой главе речь пойдет о трехмерном твердотельном моделировании в системе КОМПАС-3D V10. Как и предыдущая, данная глава начнется с рассмотрения команд для работы в трехмерном редакторе КОМПАС-3D и приведения небольших и не очень сложных примеров, которые помогут вам освоиться в среде моделирования (если она еще не знакома вам). В завершении главы, когда вы уже освоите базовые принципы проектирования, будут приведены практические примеры. Мы рассмотрим разработку трехмерной модели знакомого вам одноступенчатого цилиндрического редуктора, а также некоторые необычные примеры разработок 3D-моделей с применением инструментария КОМПАС-3D из моей практики.
Твердотельное моделирование в КОМПАС-3D
Моделирование – сложный процесс, результатом которого является законченная трехмерная сцена (модель объекта) в памяти компьютера. Моделирование состоит из создания отдельных объектов сцены с их последующим размещением в пространстве. Для выполнения трехмерных моделей объектов существует множество подходов. Рассмотрим основные из них, предлагаемые в наиболее успешных на сегодня программах 3D-графики:
• создание твердых тел с помощью булевых операций – путем добавления, вычитания или пересечения материала моделей. Этот подход является главным в инженерных графических системах;
• формирование сложных полигональных поверхностей, так называемых мешей (от англ. mesh – сетка), путем полигонального или NURBS-моделирования;
• применение модификаторов геометрии (используются в основном в дизайнерских системах моделирования). Модификатором называется действие, назначаемое объекту, в результате чего свойства объекта и его внешний вид изменяются. Модификатором может быть вытягивание, изгиб, скручивание и т. п.
КОМПАС-3D – это система твердотельного моделирования. Это значит, что все ее операции по созданию и редактированию трехмерных моделей предназначены только для работы с твердыми телами.
Твердое тело – область трехмерного пространства, состоящая из однородного материала и ограниченная замкнутой поверхностью, которая сформирована из одной или нескольких стыкующихся граней. Любое твердое тело состоит из базовых трехмерных элементов: граней, ребер и вершин (рис. 3.1).
Рис. 3.1. Твердые тела: призма (состоит из семи граней) и шар (из одной грани)
Грань – гладкая (не обязательно плоская) часть поверхности детали, ограниченная замкнутым контуром из ребер. Частный случай – шарообразные твердые тела и тела вращения с гладким профилем, состоящие из единой грани, которая, соответственно, не имеет ребер.
Ребро – пространственная кривая произвольной конфигурации, полученная на пересечении двух граней.
Вершина – точка в трехмерном пространстве. Для твердого тела это может быть одна из точек на конце ребра.
Твердые тела в системе КОМПАС-3D создаются путем выполнения булевых операций над отдельными объемными элементами детали (призмами, телами вращения и т. д.). Другими словами, процесс построения состоит из последовательного добавления и (или) удаления материала детали. Контур формы добавляемого или удаляемого слоя материала определяется плоской фигурой, называемой эскизом, а сама форма создается путем перемещения этого эскиза в пространстве (вращение вокруг оси, выдавливание перпендикулярно плоскости эскиза, перемещение по траектории и пр.). В общем случае любое изменение формы детали (твердого тела) называется трехмерной формообразующей операцией, или просто операцией.
Формировать твердотельные модели в КОМПАС-3D можно в двух типах документов: КОМПАС-Деталь и КОМПАС-Сборка. В отличие от графических документов (чертеж и фрагмент), оба типа трехмерных документов равноценны, среди них нет главного или вспомогательного.
Документ Деталь предназначен для создания с помощью формообразующих операций и хранения модели целостного объекта (чаще всего какого-либо простого изделия, отдельной детали, компонента). Хотя, как было отмечено в гл. 1, вовсе не обязательно, чтобы модель в документе КОМПАС-Деталь отвечала реальной единичной детали на производстве. Например, никто не мешает представить вам в качестве единой детали трехмерную модель подшипника (в действительности состоящего из нескольких деталей), если вам так удобнее использовать его в сборках, параметризировать или редактировать.
В документе Сборка собираются в единый агрегат смоделированные и сохраненные ранее детали: вы сначала размещаете их в пространстве, сопрягаете вместе и фиксируете. Более того, в десятой версии программы функционал по наполнению сборок заметно расширился: теперь вы можете создавать прямо в сборке тела, которые будут принадлежать сугубо сборке (храниться в файле сборки, а не в отдельном файле детали или библиотеке стандартных элементов). Грубо говоря, начиная с десятой версии приложения сборка стала чем-то наподобие документа-детали, в который можно вставлять другие детали из несвязанных документов.
Необходимо также отметить, что в ранних версиях КОМПАС-3D при создании детали существовало жесткое ограничение: в документе КОМПАС-Деталь может быть выполнено только одно твердое тело. Вся геометрия построенной модели детали основывалась на одной базовой формообразующей операции (например, операции вращения или выдавливания), называемой основанием детали. Перед началом формирования 3D-модели, чтобы получить нормальную модель, всегда нужно было выбрать какой-либо элемент в реальном объекте, который бы служил базой для всех построений. Это связано с тем, что все последующие формообразующие операции отталкивались от основания детали, как бы нанизывались на него, и не могли выполняться отдельно. При неудачном выборе базового элемента последующие доработка и редактирование модели оказывались иногда очень затруднительными.
Начиная с КОМПАС-3D V8 Plus это ограничение снято. Теперь в детали, как и в сборке, можно создавать несколько не связанных друг с другом твердых тел (в сборке именно создавать, вставлять и ранее можно было сколько угодно). Такой подход получил название многотельного моделирования. Оно значительно упрощает разработку сложных деталей, снимая ограничения на создание моделей, которые раньше можно было получить лишь в режиме редактирования детали в сборке. Это значит, что булевы операции, которые до этого выполнялись только в сборке, теперь доступны при создании детали.
Многотельность также позволяет создавать модель «с разных сторон». Конструктору теперь необязательно отталкиваться от одной базовой операции в детали или элементов, привязанных к ней (что было не всегда оправдано с точки зрения удобства моделирования и последующего редактирования модели). Сейчас можно формировать модель, начиная с любой ее части, создавая сначала сколь угодно много отдельных тел, свободно размещенных в пространстве, и постепенно объединяя их по мере проектирования (рис. 3.2).
Рис. 3.2. Коленчатый вал: пример многотельного моделирования
При выполнении большинства операций в детали в связи с появлением многотельности добавился выбор нескольких вариантов (режимов) построения:
• при вырезании (удалении материала):
· вычитание элемента – удаление материала детали происходит внутри замкнутой поверхности, сформированной по заданному эскизу и типу операции (выдавливание, вращение и т. д.);
· пересечение элементов – удаление материала детали, находящегося снаружи поверхности, которая сформирована в результате операции;
• при «приклеивании» (добавлении материала):
· новое тело – добавляемый трехмерный элемент формирует в детали новое твердое тело, независимо от того, пересекается он с уже существующими телами или нет. Если создаваемый элемент не имеет пересечений или касаний с существующей геометрией детали, то эта функция включается автоматически;
· объединение – добавляемый элемент соединяется с твердым телом, с которым он пересекается;
· автообъединение – при этом система автоматически объединяет в одно тело существующий и новый элементы, если они пересекаются, или формирует новое тело, если они не пересекаются.
Результат формообразующей операции выбирается на вкладке Вырезание панели свойств при удалении или Результат операции – при добавлении материала (рис. 3.3).
Рис. 3.3. Выбор результата операции при добавлении материала
Очень важное понятие при многотельном моделировании – область применения операции. Представьте себе ситуацию, когда вследствие выполнения той или иной команды создаваемый элемент пересекает несколько твердых тел в модели. Какие действия предпримет система и какой результат будет у этой операции? Чтобы пользователь мог дать конкретный ответ на эти вопросы, и была реализована область применения операции. Например, если элемент выдавливания пересекает два (или более) тела, вы можете указать, с каким из этих тел объединять добавляемый элемент, объединять ли вообще или же формировать изо всех пересекающихся объектов одно твердое тело. Точно так же и при вырезании: настроив область применения операции, вы укажете, какие тела нужно «резать» (удалять часть их материала), а какие оставить нетронутыми. Другими словами, область применения операции – это набор тел, на которые распространяется действие текущей операции. Данный набор формируется простым указанием тел в окне представления модели после нажатия кнопки Ручное указание тел
на панели свойств.
Примечание
При добавлении материала к детали настраивать область применения операции можно только в режиме объединения (это естественно, так как в противном случае создается набор отдельных тел). Для операций удаления материала задать область применения операции можно всегда (конечно, если формообразующий элемент операции пересекается с другими телами модели).
Количество тел в текущей детали отображается в дереве построения в скобках справа от названия детали (рис. 3.4). При структурном отображении состава модели в дереве построения формообразующие операции, относящиеся к разным телам, показываются в отдельных группах.
Рис. 3.4. Количество тел в детали
Однако, наряду со многими преимуществами многотельного моделирования, способы получения нескольких тел в модели ограничены следующим.
• Каждое тело в модели детали должно быть неразрывным, из чего следует, что не допускается выполнение таких формообразующих операций, которые разделяют одно или несколько тел на части. Например, нельзя с помощью операции вырезания (или какой-либо другой) разбить тело на несколько нестыкующихся частей. Если вы точно знаете, что в вашей детали будет несколько разрозненных частей, необходимо сразу создавать их как отдельные тела.
• Нельзя перемещать тела в модели (как, например, детали в сборке), кроме как изменяя положения их эскизов.
• Невозможно копировать тела с помощью команд создания массивов. Тело, полученное в результате булевой операции или операции Зеркально отразить тело, также нельзя использовать в массивах. Более того, любые элементы тела, участвовавшего в булевой операции, также не получится размножить.
• При применении массивов в деталях с несколькими твердыми телами копируемые элементы (приклеенные или вырезанные) размещаются на том же теле, что и исходный элемент.
• При наличии пересекающихся, но разных тел в одной детали ассоциативные чертежи могут быть неправильно построены.
Формообразующие операции (построение деталей)
Мы уже выяснили, что КОМПАС – система твердотельного моделирования и что большинство операций по созданию моделей в ней основываются на эскизах (исключение составляют операции по созданию фаски, скругления, оболочки и т. п.). Эскиз – это обычное двухмерное изображение, размещенное на плоскости в трехмерном пространстве. В эскизе могут присутствовать любые графические элементы (примитивы), за исключением элементов оформления (обозначений) конструкторского чертежа и штриховки. Эскизом может быть как замкнутый контур или несколько контуров, так и произвольная кривая. Каждая трехмерная операция предъявляет свои требования к эскизу (например, эскиз для операции выдавливания не должен иметь самопересечений и т. п.). Об этих требованиях будет рассказываться при рассмотрении каждой отдельной команды. В дальнейшем нам постоянно придется создавать эскизы, поэтому считаю необходимым подробно описать порядок выполнения эскиза, чтобы больше не возвращаться к этому вопросу.
Последовательность построения эскиза для формообразующей операции такова.
1. Выделите в дереве построения или в окне документа плоскость, на которой планируете разместить эскиз (плоскость может быть стандартной или вспомогательной). Если в модели уже есть какое-либо тело (или тела), вы можете в качестве опорной плоскости эскиза использовать любую из его плоских граней. Выделить плоскую грань можно только в окне представления документа.
2. Нажмите кнопку Эскиз
на панели инструментов Текущее состояние. Модель плавно изменит ориентацию таким образом, чтобы выбранная вами плоскость разместилась параллельно экрану (то есть по нормали к линии взгляда).
Внимание!
Возможность автоматического изменения ориентации модели при запуске команды создания эскиза появилась только в КОМПАС-3D V8. Это, конечно, маловероятно, но если у вас установлена более ранняя версия, то после нажатия кнопки Эскиз модель не сдвинется с места. В таком случае перед каждым созданием эскиза для операции вам необходимо будет вручную устанавливать ориентацию модели нормально к плоскости эскиза. Для этого выделите плоскость и воспользуйтесь командой Нормально к
которая находится в раскрывающемся меню кнопки Ориентация
на панели инструментов Вид.
3. После запуска процесса создания эскиза компактная панель изменит свой вид (см. рис. 1.38). На ней будут расположены панели инструментов, свойственные как трехмерным, так и графическим документам системы КОМПАС-3D. Пользуясь командами для двухмерных построений, создайте изображение в эскизе. Для завершения создания или редактирования эскиза отожмите кнопку Эскиз. Компактная панель при этом восстановит свой прежний вид, а модель примет ту же ориентацию в пространстве, которая была до построения эскиза.
4. Эскиз останется выделенным в окне документа (подсвечен зеленым цветом), поэтому вы сразу можете вызывать нужную команду и создавать или вносить изменения в геометрию модели.
Примечание
Можно запустить формирование трехмерной формообразующей операции, не выходя из режима построения эскиза. Для этого необходимо всего лишь вызвать нужную команду с компактной панели (или с помощью команды меню). Система самостоятельно завершит редактирование эскиза и запустит соответствующую команду, основываясь на текущем эскизе.
Все трехмерные операции в КОМПАС-3D делятся на основные (то есть собственно формообразующие) и дополнительные. Основные операции включают команды для добавления и удаления материала детали, булевы операции, команду создания листового тела, а также команду Деталь-заготовка. Дополнительные операции представляют собой команды для реализации тех или иных конструкторских элементов на теле детали (фаски, скругления, отверстия, уклона, ребра жесткости и т. д.). В отдельную группу можно отнести команды построения массивов трехмерных элементов как в детали, так и в сборке. Есть также некоторые специфические команды, доступные только для сборки.
В соответствии с изложенной классификацией мы будем дальше рассматривать инструменты трехмерного редактора КОМПАС-3D.
Существует четыре основных подхода к формированию трехмерных формообразующих элементов в твердотельном моделировании. Эти подходы практически идентичны во всех современных системах твердотельного 3D-моделирования (есть, конечно, небольшие различия в их программной реализации, но суть остается той же). Рассмотрим их.
• Выдавливание. Форма трехмерного элемента образуется путем смещения эскиза операции (рис. 3.5, а) строго по нормали к его плоскости (рис. 3.5, б). Во время выдавливания можно задать уклон внутрь или наружу (рис. 3.5, в и г). Контур эскиза выдавливания не должен иметь самопересечений. Эскизом могут быть: один замкнутый контур, один незамкнутый контур или несколько замкнутых контуров (они не должны пересекаться между собой). Если вы формируете основание твердого тела выдавливанием и используете в эскизе несколько замкнутых контуров, то все эти контуры должны размещаться внутри одного габаритного контура, иначе вы не сможете выполнить операцию. При вырезании или добавлении материала выдавливанием замкнутые контуры могут размещаться произвольно.
Рис. 3.5. Выдавливание: эскиз (а), сформированный трехмерный элемент (б), уклон внутрь (в) и уклон наружу (г)
• Вращение. Формообразующий элемент является результатом вращения эскиза (рис. 3.6, а) в пространстве вокруг произвольной оси (рис. 3.6, б). Вращение может происходить на угол 360° или меньше (рис. 3.6, в). Обратите внимание, ось вращения ни в коем случае не должна пересекать изображение эскиза!
Рис. 3.6. Вращение: эскиз (а), полное вращение (б), вращение на угол меньше 360° (в)
Если контур в эскизе незамкнут, то создание тела вращения возможно в двух различных режимах: сфероид или тороид (переключение производится с помощью одноименных кнопок панели свойств). При построении сфероида конечные точки контура соединяются с осью вращения отрезками, перпендикулярными к оси, а в результате вращения получается сплошное тело. В режиме тороида перпендикулярные отрезки не создаются, а построенный трехмерный элемент принимает вид тонкостенного тела с отверстием вдоль оси вращения.
• Кинематическая операция. Поверхность элемента формируется в результате перемещения эскиза операции вдоль произвольной трехмерной кривой (рис. 3.7). Эскиз должен содержать обязательно замкнутый контур, а траектория перемещения – брать начало в плоскости эскиза. Разумеется, траектория должна не иметь разрывов.
Рис. 3.7. Кинематическая операция: эскиз и траектория операции (а), трехмерный элемент (б)
• Операция по сечениям. Трехмерный элемент создается по нескольким сечениям-эскизам (рис. 3.8). Эскизов может быть сколько угодно, и они могут быть размещены в произвольно ориентированных плоскостях. Эскизы должны быть замкнутыми контурами или незамкнутыми кривыми. В последнем эскизе может размещаться точка.
Рис. 3.8. Операция по сечениям: набор эскизов в пространстве (а), сформированный трехмерный элемент (б)
Перечисленных четырех способов обычно хватает для формирования сколь угодно сложных форм неорганического мира. Иногда, правда, бывает значительно легче сформировать объект, используя другие методы моделирования в других графических системах (речь идет о полигональном или NURBS-моделировании). Однако в 90 % случаев твердотельного инструментария достаточно для построения неживых объектов.
Все команды для построения и редактирования детали расположены на панели инструментов Редактирование детали (рис. 3.9). Для перехода к этой панели щелкните на одноименной кнопке компактной панели (разумеется, активным должен быть документ КОМПАС-Деталь).
Рис. 3.9. Панель инструментов Редактирование детали
Подобно прочим панелям инструментов, панель Редактирование детали содержит как одиночные кнопки, так и группы кнопок.
Первой идет группа кнопок, позволяющих добавить материал детали (или создать основание). В нее входят следующие команды:
Операция выдавливания;
Операция вращения;
Кинематическая операция;
Операция по сечениям.
Как видите, все эти команды отвечают определенному способу построения формы твердого тела, которые были описаны выше. Как правило, с одной из этих команд начинается построение твердого тела (хоть наличие единого основания для всей детали необязательно, но для конкретного твердого тела в модели оно, конечно, должно быть).
После создания любой формообразующей операции в дереве построения добавляется новый узел со значком выполненной операции и с ее названием, а в подчиненной ветке этого узла содержится перечень эскизов, используемых в операции (рис. 3.10). Названия всех операций по умолчанию совпадают с названиями их команд, кроме того, после двоеточия к названию добавляется порядковый номер операции (операции каждого типа имеют свою нумерацию). Вы можете настроить на панели свойств имя, отображаемое в дереве, до завершения создания операции или прямо в дереве построения после того, как формообразующий элемент или эскиз создан.
Рис. 3.10. Отображение последовательности операций в дереве построения модели
Еще одной операцией, с которой нередко начинается построение детали, является Деталь-заготовка
(ее кнопка следует сразу за группой команд добавления материала). Эта команда позволяет использовать в качестве заготовки другую, ранее построенную и сохраненную деталь. После вставки детали-заготовки в новый документ вы можете продолжить построение или редактировать заготовку так же, как если бы создали основание, например, при помощи обычной операции выдавливания. Заготовка может вставляться как самостоятельный объект (кнопка Вставка без истории на панели свойств) или с поддержкой связи с файлом источником (Вставка внешней ссылкой). Во втором случае все изменения в детали-образце будут переноситься в файл на вставленную заготовку. При установленном флажке Зеркальная деталь на панели свойств деталь-заготовка будет вставлена в документ в зеркальном отображении. Кнопка Деталь-заготовка доступна, только если в детали не создано еще ни одного объекта.
За командой вставки заготовки идет группа команд удаления материала детали (команды вырезания):
Вырезать выдавливанием;
Вырезать вращением;
Вырезать кинематически;
Вырезать по сечениям.
Как и команды добавления материала, они реализуют четыре основных способа формирования геометрии твердотельных моделей. Требования к эскизам этих операций такие же, как и для добавления материала. Единственное отличие – все эти команды неактивны, если в детали нет хотя бы одной операции добавления материала (это логично – вырезать можно только из чего-то уже построенного).
Группа команд для вырезания присутствует также и в документе КОМПАС-Сборка. В сборке с их помощью можно делать сквозные вырезы, проходящие через несколько деталей сразу. Изменение в геометрии каждой из деталей в сам документ (файл) детали не передается.
Важной особенностью всех команд добавления и вырезания является возможность формирования не только сплошных трехмерных элементов, но и так называемой тонкой стенки (рис. 3.11).
Рис. 3.11. Результат операции выдавливания в режиме построения тонкой стенки
Настройка параметров тонкой стенки осуществляется на вкладке Тонкая стенка панели свойств при выполнении любой из команд добавления или удаления материала. Раскрывающийся список Тип построения тонкой стенки содержит следующие варианты:
Нет – формообразующий элемент создается сплошным (нет тонкой стенки);
Наружу – тонкая стенка строится наружу от контура эскиза операции;
Внутрь – тонкая стенка строится внутрь от контура;
Два направления – тонкая стенка строится в обоих направлениях сразу, причем толщину стенки по каждому из направлений можно задавать различной;
Средняя плоскость – тонкая стенка строится на одинаковое расстояние (равное половине заданной толщины) в обе стороны от контура эскиза.
Примечание
Если в контуре эскиза для «приклеивания» или вырезания содержится незамкнутая кривая, то автоматически включается режим создания тонкой стенки, выдавленной наружу (при этом пункт Нет вообще недоступен в раскрывающемся списке Тип построения тонкой стенки).
При выполнении отдельных команд добавления или удаления материала (в частности, выдавливания и вращения) можно задавать направление операции. Оно указывает, в какую сторону относительно опорной плоскости эскиза будет происходить добавление или удаление материала. Можно выбрать одно из следующих направлений:
Прямое направление – эскиз формообразующей перемещается в направлении нормали к поверхности эскиза (это вариант задан по умолчанию);
Обратное направление – эскиз перемещается в противоположную от направления нормали сторону;
Два направления – эскиз смещается в обе стороны от опорной плоскости, при необходимости на различное расстояние или угол в каждую сторону;
Средняя плоскость – операция действует симметрично относительно плоскости эскиза, а смещение или поворот осуществляется на половину заданного расстояния или угла.
Направление выбирается (при запущенной команде выдавливания или вращения) из раскрывающегося списка Направление на вкладке Параметры панели свойств. Для удобства ориентации направление нормали к плоскости эскиза при выполнении операции указывается фантомной стрелкой. Как правило, нормаль всегда направлена наружу от тела детали. Для первого формообразующего элемента (основания) направление нормали совпадает с положительным направлением координатной оси глобальной системы координат, перпендикулярной к плоскости эскиза (то есть если эскиз лежит в плоскости XY, то направление нормали совпадет с направлением оси Z).
Примечание
Положение глобальной системы координат трехмерного документа вы всегда можете видеть в левом нижнем углу окна представления документа.
При выборе определенного направления в окне документа сразу изменяется фантом формообразующей операции. Фантом трехмерного элемента – это условное временное отображение изменений, которые коснутся детали при выполнении той или иной операции (рис. 3.12). Фантом трехмерного элемента всегда прозрачен, его контур отрисовывается серыми тонкими линиями. Отображение фантома всегда отвечает выбранным в данный момент настройкам текущей операции (направление и величина смещения, выполнение сплошным или тонкой стенкой и т. п.).
Рис. 3.12. Фантом операции выдавливания
Внимание!
Не путайте направление стрелки, отображаемой при выполнении формообразующей операции, с направлением операции или фантомом операции! Стрелка всегда показывает направление нормали к эскизу булевой операции (например, того же выдавливания). Направление операции определяет, в какую сторону относительно нормали будет происходить операция – по нормали, в противоположную или в обе стороны. Стрелка также не является фантомом операции или его частью. Фантом – это изменения в форме детали вследствие проведенной операции, зависящие от направления операции и не зависящие от направления нормали.
Для других команд добавления или удаления материала направление не задается, поскольку форма трехмерных элементов, полученных в результате выполнения этих команд, однозначно определяется формой и размещением эскизов, в них входящих.
Еще одной из главных формообразующих операций является Булева операция
Она доступна, только если в детали присутствует более одного тела. Данная операция предназначена для объединения, вычитания или пересечения указанных тел.
Эта операция очень полезна, хотя ее почему-то употребляют нечасто, а стараются получить модель с помощью других команд, зачастую ощутимо усложняя себе жизнь. Возможно, дело в привычке.
Рассмотрим действие данной операции на небольшом примере, заодно и закрепим все прочитанное до этого.
1. Создайте документ КОМПАС-Деталь. Вы уже знаете, что это можно сделать, вызвав окно Новый документ с помощью меню Файл → Создать или выбрав строку Деталь из раскрывающегося списка кнопки Создать на панели Стандартная.
2. Откроется пустой документ, в котором пока есть только три координатные плоскости. В окне дерева построения выделите плоскость XY и нажмите кнопку Эскиз на панели инструментов Текущее состояние.
3. В режиме построения эскиза перейдите на панель Геометрия компактной панели инструментов и нажмите кнопку Многоугольник (она находится в одной группе с кнопками команд построения прямоугольников). Создайте пятиугольник с центром в начале координат эскиза и радиусом вписанной окружности 20 мм (рис. 3.13). Завершите редактирование эскиза.
Рис. 3.13. Построение пятиугольника в эскизе
4. На компактной панели перейдите на панель Редактирование детали, на которой нажмите кнопку Операция выдавливания. Оставьте заданное по умолчанию направление операции в ту же сторону, что и направление нормали, а в поле Расстояние 1 введите значение 30. Нажмите кнопку Создать объект для формирования твердого тела выдавливанием. У вас должна получиться призма с равносторонним пятиугольником в основании.
Примечание
Можно не задавать параметры операций (расстояние или угол смещения, величину уклона и т. п.) в полях панели свойств. Есть другой способ, возможно, не такой удобный, но иногда более быстрый, – перетаскивание характерных точек трехмерного элемента. Как и в двухмерном изображении, в 3D-модели есть характерные точки, перетаскивая которые можно изменять тот или иной параметр так, как будто вы вводите его значение на панели свойств. Характерные точки отображаются на фантоме операции маленькими черными квадратами. При наведении указателя на точку возле нее всплывает подсказка с названием и текущим значением параметра (см. рис. 3.12). Нажмите кнопку мыши и перетаскивайте точку – соответствующий параметр будет изменяться, а его значение отображаться справа от указателя мыши.
5. Выделите верхнюю грань призмы в окне представления документа (то есть щелкнув на самой грани в модели). Грань должна подсветиться зеленым цветом. Опять нажмите кнопку для создания эскиза. Переключитесь на панель инструментов Геометрия и с помощью команды Дуга постройте дугу с центром в одной из вершин основания-пятиугольника и радиусом 20 мм. Поскольку этот эскиз предполагается использовать в операции вращения, обязательно создайте осевую линию (команда Отрезок, стиль линии Осевая) проходящую через конечные точки дуги (рис. 3.14).
Рис. 3.14. Эскиз для будущей операции вращения
6. Теперь попробуем создать трехмерный элемент, не выходя из режима редактирования эскиза. Не отжимая кнопку Эскиз, перейдите на панель Редактирование детали и щелкните на кнопке Операция вращения. На основе текущего эскиза сразу должна запуститься операция создания тела вращения. Необходимо настроить параметры команды таким образом, чтобы в результате ее выполнения получить сплошной шар, как отдельное твердое тело (это нужно, чтобы потом можно было применить булеву операцию). Для этого выполните следующее:
1) в группе переключателей Способ на панели свойств нажмите кнопку Сфероид, направление оставьте заданным по умолчанию (прямое), но проследите, чтобы в поле Угол прямого направления было задано значение 360;
2) перейдите на вкладку Тонкая стенка и из раскрывающегося списка Тип построения тонкой стенки выберите пункт Нет, чтобы запретить создание тонкой стенки и получить сплошной шар;
3) перейдите на вкладку Результат операции и нажмите кнопку-переключатель Новое тело, чтобы формируемый шар не был объединен с призмой.
7. Нажмите кнопку Создать объект. В результате получится сплошной шар радиусом 20 мм (рис. 3.15). Несмотря на то, что созданные объекты пересекаются, это все равно два разных твердых тела (о чем свидетельствует то, что в местах входа шара в призму нет четко обозначенных ребер).
Рис. 3.15. Два созданных тела в модели
8. Теперь можно перейти к демонстрации возможностей команды Булева операция. Нажмите соответствующую кнопку на панели Редактирование модели. В строке подсказок появится текст Выберите объекты для булевой операции. По очереди щелкните на каждом из двух тел в окне модели (сначала на призме, потом на шаре). При этом ребра каждого выбранного тела (а также значки трехмерных операций, образующих тело в дереве построения) будут подсвечены красным цветом. Результатом этой операции могут быть четыре разных тела:
• тело, полученное объединением призмы и шара (рис. 3.16, а). Для этого на панели свойств в группе кнопок Результат операции нужно нажать кнопку Объединение
Обратите внимание: в местах пересечения шара призмы появились ребра нового тела;
• тело, сформированное в результате вычитания шара из призмы, то есть вычитанием второго тела из первого (рис. 3.16, б). Для этого на панели свойств должна быть нажата кнопка Вычитание
• тело, полученное вычитанием призмы из шара (рис. 3.16, в). Поскольку вычитается всегда второе тело, вам необходимо изменить порядок указания тел. Этого можно добиться двумя способами. Первый – снять выделение с обоих тел, щелкнув на свободном пространстве модели, а затем заново указать тела для булевой операции, сначала щелкнув на шаре, а потом на призме. Второй и более правильный метод – изменить порядок тел в списке Список объектов на панели свойств (в этом списке каждое тело обозначается названием последней выполненной над ним формообразующей операции). Чтобы изменить порядок, выделите одно из тел и переместите его в списке, используя кнопки со стрелками, размещенные в верхней части списка (рис. 3.17);
• тело, сформированное в результате пересечения двух указанных тел (рис. 3.16, г). Для этого на панели свойств должна быть нажата кнопка Пересечение
Рис. 3.16. Результат выполнения булевой операции: объединение (а), вычитание (б, в) и пересечение (г)
Рис. 3.17. Изменение порядка выбранных тел в списке объектов булевой операции
Вы можете самостоятельно попробовать все четыре варианта команды Булевой операции. Для этого после ее выполнения выделите ее в дереве построения и вызовите команду контекстного меню Редактировать (в более ранних версиях программы – Редактировать элемент) (рис. 3.18). Запустится процесс редактирования выбранной в дереве операции: трехмерный элемент опять перейдет в фантомное состояние, а на панели свойств отобразятся настройки данной операции. Изменив какие-либо из значений параметров (в нашем примере – результат булевой операции), вновь создайте трехмерный элемент, нажав кнопку Создать объект.
Рис. 3.18. Контекстное меню трехмерного элемента, вызванное из дерева построения
В контекстном меню для трехмерных элементов присутствует еще несколько очень полезных команд (см. рис. 3.18).
• Удалить (или Удалить элемент в предыдущих версиях КОМПАС-3D) – удаляет трехмерный элемент из модели и дерева построения. При удалении определенного элемента из детали его эскиз (или эскизы) не удаляются, но удаляются все зависящие от него (условно подчиненные) трехмерные элементы (операции). Под условно подчиненными следует понимать такие операции, которые, хоть и являются отдельными трехмерными объектами, формируются на базе уже существующей геометрии модели и напрямую зависят от нее (являются производными). Например, если вы выполнили операцию выдавливания, после чего на пересечении граней полученного объекта создали скругления, то после удаления операции выдавливания все скругления будут также удалены!
Внимание!
Будьте осторожны при удалении тех или иных элементов детали – восстановить их, кроме как создав заново, будет невозможно!
• Скрыть – управляет отображением элемента детали, выбранного в дереве построения. После ее выполнения элемент будет скрыт (спрятан) в модели. Если вызывать контекстное меню для уже скрытого элемента, на месте этой команды будет команда Показать, включающая отображение объекта. Если вы скрываете какую-то часть твердого тела (одну операцию), то в модели будет спрятано все тело, в состав которого входит выбранная операция. Режим скрытия очень полезен для сложных моделей, особенно больших сборок. Скрытие отдельных элементов значительно облегчает работу с такой моделью, ее становится проще приближать, отдалять или поворачивать в окне представления.
• Отношения в дополнительном окне – команда позволяет создать дополнительное окно дерева модели и отобразить в нем объекты, являющиеся исходными и производными для объекта, выделенного в дереве.
• Указатель под выделенный объект – автоматически перемещает и устанавливает указатель, отсекающий операции построения в дереве под выделенный трехмерный элемент. Подробнее о данном указателе читайте далее.
• Исключить из расчета – исключает из расчета выбранную операцию, вследствие чего модель перестраивается так, как будто исключенной операции вообще нет в модели. Если элемент исключен, то вместо этой команды будет отображена команда Включить в расчет. При исключении трехмерного элемента из модели исключаются все его условно подчиненные элементы, однако при включении этого же элемента в структуру модели все подчиненные объекты останутся исключенными. Их придется включать вручную. Исключенные элементы отображаются в дереве построения светло-голубым цветом и помечены крестиком в левом нижнем углу.
• Исключить из расчета следующие – новая команда, позволяющая исключить из расчета детали все трехмерные формообразующие элементы, которые следуют за выделенным элементом (для которого было вызвано контекстное меню).
• Включить в расчет последующие – эта функция активирует ранее исключенные из расчета формообразующие элементы (если такие есть, конечно) во всех элементах, следующих ниже выделенного.
Как вы наверняка успели заметить, контекстное меню, вызываемое на объекте дерева построения модели, динамически изменяется в зависимости от состояния объекта. Более того, состав меню меняется даже для каждого отдельного типа объектов модели. Например, контекстное меню для эскиза будет иметь другой вид (рис. 3.19).
Рис. 3.19. Контекстное меню, вызванное в дереве построения для эскиза
Часть команд меню для эскиза имеет схожее назначение с командами трехмерных элементов (операций): Исключить из расчета, Исключить из расчета последующие, Включить в расчет последующие, Редактировать и Показать (эскиз после выполнения трехмерной операции сразу делается скрытым, исключение составляют эскизытраектории для кинематических операций, но они, если быть точным, и не входят в состав эскизов этой операции).
При редактировании эскиза трехмерная операция, в которую он входит, а также все операции в модели, следующие за этой операцией в дереве построения, блокируются (становятся недоступными). При этом в дереве модели возле их значков появляется изображение защелкнутого замка. Данные операции нельзя ни выделять, ни изменять до тех пор, пока не будет завершено редактирование эскиза. После выхода из режима редактирования эскиза все эти операции будут перестроены с учетом изменений в эскизе.
Есть в контекстном меню эскиза (см. рис. 3.19) и некоторые особенные команды:
• Изменить плоскость – позволяет переназначить опорную плоскость эскиза, правда, при этом могут быть утеряны все параметрические связи, наложенные на эскиз;
• Разместить эскиз – дает возможность изменять размещение всего изображения эскиза в пределах его базовой плоскости (подобно изменению точки привязки вида в чертеже).
Примечание
При запущенной на выполнение трехмерной операции контекстное меню в дереве построения нельзя вызвать.
Еще одной из основных формообразующих операций является создание листового тела. Функции для работы с листовыми моделями мы рассмотрим позже.
Перейдем к дополнительным командам, позволяющим легко реализовать различные конструкторские элементы на теле детали. Все эти команды доступны, только если в модели уже есть построенные тела, созданные с помощью одной или нескольких основных формообразующих команд. Трехмерные элементы, созданные с использованием дополнительных операций, находятся в зависимости от основных элементов. Эта зависимость строго однонаправленная, то есть редактирование производного элемента не влияет на состояние основного, но при изменении основного элемента дополнительный также изменит свою форму.
Одними из наиболее используемых дополнительных команд являются Фаска
и Скругление
(на панели Редактирование детали они объединены в одну группу). Для этих операций не требуется создавать эскиз. Вы лишь указываете радиус скругления или катет и угол фаски, а также ребра, на месте которых необходимо сформировать указанный конструкторский элемент. Для выделения ребра в 3D-модели подведите к нему указатель мыши и, когда справа внизу от указателя появится изображение маленького отрезка, щелкните на ребре кнопкой мыши. Ребро должно подсветиться красным цветом. За один вызов команды Фаска или Скругление можно создавать фаску или скруглить сколько угодно ребер (рис. 3.20).
Рис. 3.20. Результат выполнения команд Фаска и Скругление
Есть и другой способ выбора ребер для построения фаски или формирования скругления. В окне модели вы можете выбрать любую грань, тогда на всех ее ребрах будут созданы фаски или скругления указанных параметров. Выделить грань достаточно просто: подведите к ней указатель (возле указателя появится условное обозначение грани) и щелкните кнопкой мыши. Грань подсветится. Как и для большинства других трехмерных операций, создаваемые фаски или скругления сначала отображаются фантомами с характерной точкой, позволяющей прямо в окне модели редактировать их параметры.
При описании двух предыдущих команд был затронут вопрос выделения трехмерных элементов (ребер и граней) непосредственно на самой модели. Как вы уже заметили, система отслеживает, какой объект находится ближе всего к указателю мыши, и выдает своеобразную подсказку, что сейчас можно выделить. Иногда необходимо выделить объекты только какого-то одного конкретного типа, например только ребра или только вершины. В достаточно сложных моделях бывает нелегко выбрать нужный объект, так как мешают другие элементы, расположенные слишком близко. Например, при создании скругления необходимо выделять или снимать выделение только с ребер, а по короткому ребру очень сложно попасть щелчком кнопкой мыши в окне модели. Случайно щелкнув на грани (при запущенной команде Скругление), вы тем самым выделите все ее ребра, что только добавит вам лишних хлопот. Для решения этой проблемы в системе КОМПАС-3D есть возможность настройки фильтров выделения. Это можно сделать на панели инструментов Фильтры (рис. 3.21). С помощью кнопок на этой панели можно включить или выключить возможность выделения следующих объектов:
• граней;
• ребер;
• вершин;
• конструктивных плоскостей;
• конструктивных осей.
Рис. 3.21. Панель Фильтры
По умолчанию на этой панели нажата кнопка Фильтровать все, которая позволяет выделять все трехмерные элементы модели.
Продолжим рассмотрение дополнительных формообразующих операций для детали.
Команда Отверстие
очень удобна для быстрого создания различных отверстий со сложным профилем в теле детали. Эта команда доступна, если в модели выделена плоская грань, которая автоматически становится базовой для отверстия. Для формирования отверстия необходимо задать его координаты на базовой плоскости, а главное – выбрать тип (профиль) отверстия и определить его размеры. Тип отверстия можно указать на панели Выбор отверстия (рис. 3.22) вкладки Параметры панели свойств. В библиотеке отверстий содержатся как самые простые отверстия, например под ввинчиваемые болты, так и с очень сложным профилем, включающим всевозможные канавки, буртики и пр. Выбрав тип отверстия, задав координаты его центра и размеры, нажмите кнопку Создать объект – система выполнит все построение (то есть с помощью этой команды вы избавились от необходимости самостоятельно рисовать эскиз). Редактируется построенный объект не как обычная операция вырезания, а именно как отверстие. Вы можете изменить его профиль и построить заново, при этом вам не нужно будет перерисовывать эскиз.
Рис. 3.22. Выбор типа отверстия и задание его размеров
Примечание
У элемента, созданного с помощью команды Отверстие, все-таки есть эскиз (вы можете увидеть его в дереве построений, раскрыв узел операции отверстия). Однако этот эскиз содержит не изображение профиля отверстия, а всего лишь точку, обозначающую положение центра отверстия на опорной плоскости. Таким образом, редактируя этот эскиз (перемещая точку), вы изменяете положение отверстия на плоскости.
Команду Отверстие можно использовать и для сборки.
Команда Ребро жесткости
строит в детали одноименный элемент на основе эскиза, содержащего незамкнутый контур.
Еще одна из дополнительных команд – Уклон
– предназначена для придания уклона плоских граней, которые были перпендикулярны основанию (рис. 3.23). Эта команда отличается от уклона, придаваемого элементам выдавливания, следующими особенностями:
• уклон придается не всем граням относительно основания, а лишь выбранным пользователем;
• одновременно можно формировать уклон для граней, принадлежащих трехмерным элементам, которые сформированы разными формообразующими операциями;
• для операции не требуется эскиз.
Рис. 3.23. Две грани, наклоненные к основанию с помощью команды Уклон
Эта команда достаточно проста в применении. После ее вызова вы указываете плоскую грань – основание, после чего одну за другой – грани, которые нужно наклонить. Наконец, задаете угол уклона в поле Угол на панели свойств (выбранные грани отрисовываются фантомом в наклоненном состоянии) и подтверждаете создание уклона, нажав кнопку Создать объект.
Данная операция предназначена для придания небольших уклонов моделям деталей, которые предполагается изготовлять литьем. Таким образом, не редактируя эскизы и не искажая структуру модели, вы легко получаете нужные формовочные уклоны.
Совет
Если на ребрах наклоненных граней должно быть скругление, то его желательно делать уже после выполнения уклона. Операцию Уклон желательно применять на самом последнем этапе построения модели.
Используя команду Оболочка
вы сможете преобразовать твердотельную деталь в тонкостенную оболочку (рис. 3.24). При формировании оболочки вам следует лишь указать грань или грани, которые будут удалены с тела модели (на рис. 3.24 это нижняя опорная грань детали), а также задать толщину стенки.
Рис. 3.24. Сплошная деталь (а) и результат применения команды Оболочка (б)
Команда Оболочка очень полезна при проектировании различных корпусных деталей. Значительно проще сначала создать модель, полностью заполненную материалом, заботясь только о внешней форме, а не о внутренней полости, а затем с помощью одной команды превратить ее в тонкостенную деталь.
Совет
Если вы планируете применять операцию Оболочка, старайтесь не перегружать модель скруглениями.
Последними среди дополнительных операций являются команды создания сечений в модели: Сечение поверхностью
(рис. 3.25, а) и Сечение по эскизу
(рис. 3.25, б). Главное отличие этих команд в том, что для первой не требует создания эскиза, а для второй он обязателен (что и следует из названия команды).
Рис. 3.25. Результаты выполнения команд создания сечений: поверхностью (а) и по эскизу (б)
При выполнении сечения поверхностью вы указываете любую поверхность в модели (грань, вспомогательную плоскость) и направление операции (прямое или обратное). Поверхность не обязательно должна быть плоской. Направление в этой операции указывает, какую часть модели вырезать, другими словами, по какую сторону от указанной поверхности рассекать модель. Чаще всего эту команду используют для рассечения детали или сборки одной из ортогональных плоскостей, просто чтобы показать внутреннее строение модели.
Сечение по эскизу применяют, когда необходимо сформировать разрез более сложного профиля. Для этого выбирают какую-либо плоскость в модели, на которой создают эскиз профиля сечения. Затем, выделив эскиз, нажимают кнопку Сечение по эскизу и, задав направление (в модели оно будет показано стрелкой), создают вырез. Эскиз сечения должен содержать незамкнутый контур, концы которого желательно размещать за краями рассекаемой части детали. Эту команду применяют как для создания разреза в модели (то есть чтобы открыть ее внутреннее строение), так и как самостоятельный трехмерный элемент, формирующий какую-то часть геометрии модели.
Примечание
При выполнении команды Сечение по эскизу стрелка указывает направление вырезания материала при сечении, поскольку само вырезание происходит не перпендикулярно, а вдоль опорной плоскости эскиза. По этой причине направление нормали для команды Сечение по эскизу не имеет значения.
Как и команды вырезания и создания отверстий, обе команды построения сечений можно применять и для сборки.
Иногда после завершения редактирования эскиза или после включения в расчет ранее исключенных трехмерных операций модель отображается некорректно, а в дереве построений возле таких операций появляется восклицательный знак в красном кружке. Это свидетельствует об ошибках в трехмерных операциях. Их нельзя допускать в моделях. Ошибки бывают разными. Например, в результате перестроения одной из операций вы изменили форму модели так, что одно из отверстий (сформированных операцией вырезания) больше не пересекает тело детали, но ведь сама операция вырезания осталась в модели. Возникает ошибка, отверстие не вырезается, и вся последующая геометрия модели будет построена неправильно. Для устранения ошибок необходимо отредактировать эскиз или параметры неверной операции. Иногда достаточно изменить что-либо в построениях, предшествующих операции, в которой возникла ошибка.
Кроме того, иногда возникают диалоговые окна Что неверно?, которые говорят о невозможности выполнить ту или иную операцию (рис. 3.26). Появление этого окна означает, что один или несколько параметров на панели свойств заданы неверно. Такой ошибкой может быть, например, самопересечение контура операции выдавливания, отсутствие осевой линии в эскизе операции вращения, неверный эскиз операции вырезания, разделяющий тело на несколько частей, недопустимый радиус скругления и т. д. При появлении такого сообщения (в нем могут быть зафиксированы сразу несколько ошибок) завершение построения трехмерной операции невозможно.
Рис. 3.26. Сообщение об ошибке в эскизе
В отдельную группу следует отнести команды создания массивов элементов (хотя следует понимать, что эта классификация достаточно условна).
Для детали есть три разные команды создания массивов (на панели Редактирование детали их кнопки объединены в одну группу):
• Массив по сетке
– размещает копируемые элементы в узлах двухмерной сетки, количество копий по каждому из направлений задается отдельно. Сетка не обязательно должна быть ортогональной;
• Массив по концентрической сетке
– копии выбранных трехмерных элементов располагаются равномерно по концентрическим окружностям;
• Массив вдоль кривой
– создает одномерный массив трехмерных элементов, которые размещаются вдоль произвольной кривой.
Копировать с помощью этих команд можно не только один элемент (операцию), а сразу несколько (например, операцию выдавливания вместе со сформированными на ее гранях фасками или отверстиями). Выделять исходные объекты для копирования возможно как в окне модели, так и в дереве построения. Важно понимать, что операции создания массивов не предназначены для создания новых тел в модели, поэтому при задании параметров этих команд учитывайте, что копии трехмерного элемента должны быть приклеены (или вырезаны) к тому телу, которому принадлежит исходный элемент. Если хотя бы одна из копий выйдет за пределы своего тела, то система сообщит об ошибке и массив не будет создан.
Все три команды можно использовать и для сборки, но там они служат для копирования отдельных деталей, входящих в состав сборки.
Есть еще одна команда, предназначенная для копирования элементов модели, – Зеркальный массив
Она служит для создания зеркального отражения выбранных элементов модели относительно плоскости или плоской грани. Как и все прочие команды формирования массивов, Зеркальный массив не может создавать новые тела. А вот команда Зеркально отразить тело
(она находится в одной группе с командой зеркального массива) позволяет получить как одно целое тело, симметрично отразив созданную его часть относительно грани или плоскости, так и два отдельных, симметричных друг другу относительно выбранной плоскости.
Примечание
В версиях системы, предшествующих КОМПАС-3D V8 Plus (то есть до появления многотельного моделирования), команда Зеркально отразить тело называлась Зеркально отразить. Она предназначалась только для формирования целостной детали, имеющей плоскость симметрии, путем отображения части детали относительно одной из ее граней или плоскости, которая проходит через тело детали.
Мы рассмотрели практически все команды панели инструментов Редактирование детали (конечно, это не все, что есть в КОМПАС-3D: ведь существуют еще листовые детали, поверхности, вспомогательные объекты и пр.). Остались еще две операции, доступные только в режиме редактирования детали в сборке, но о них чуть позже.
При описании формообразующих команд я специально пропустил команды для создания листового тела. Листовое тело – это деталь КОМПАС-3D, представляющая собой трехмерную модель объекта (изделия), сформированного различными операциями над заготовкой из листового металла (гибка, ковка, штамповка и т. п.). Все команды для построения листовых деталей вынесены на отдельную панель инструментов – Элементы листового тела (рис. 3.27).
Рис. 3.27. Панель инструментов Элементы листового тела
Основной формообразующей командой для листовых моделей (рис. 3.28) является Листовое тело
Без выполнения этой команды любые другие операции по редактированию листовой детали будут недоступны. Процесс формирования листового тела подобен выполнению формообразующей операции выдавливания. Листовое тело создается путем перемещения эскиза листового тела в ортогональном направлении на некоторую величину (обычно небольшую – не более нескольких миллиметров).
Рис. 3.28. Листовое тело
После создания листового тела вы можете выполнять с ним различные операции, формируя деталь, которую весьма сложно было бы смоделировать с помощью только булевых операций (рис. 3.29).
Рис. 3.29. Пример листового моделирования
На листовом теле можно формировать следующие конструктивные элементы.
• Сгибы. Для создания этих трехмерных элементов на панели Элементы листового тела присутствуют следующие команды:
Сгиб;
Сгиб по линии;
Подсечка.
• Отверстия. Команды позволяют создавать отверстия как круглого, так и более сложного сечения:
Отверстие в листовом теле;
Вырез в листовом теле.
• Дополнительные конструктивные элементы (штамповка, жалюзи, буртик), которые представлены командами:
Открытая штамповка;
Закрытая штамповка;
Жалюзи;
Буртик.
• Замыкание углов, полученных при сгибах листового тела. Для этого существует специальная команда Замыкание углов
На данный момент в системе реализовано три способа замыкания: замыкание встык, замыкание с перекрытием и плотное замыкание. Для каждого способа можно выбрать различные виды обработки стыка: без обработки, стык по кромке (применим только для замыкания встык и плотного замыкания) и стык по хорде. Некоторые примеры замыкания углов показаны на рис. 3.30.
Рис. 3.30. Замыкание углов: плотное по кромке (а), встык без обработки (б), с перекрытием и обработкой стыка по хорде (в)
Кроме того, можно получить развертку листового тела (для этого есть специальная команда). В листовой модели вы также можете использовать любые булевы операции с панели Редактирование детали. Совместное применение команд листового и твердотельного моделирования предоставляет поистине колоссальные возможности проектировщику, что будет продемонстрировано на примерах.
В конце этого раздела несколько слов о способах редактирования трехмерных объектов в системе КОМПАС.
Во-первых, редактирование любого объекта можно запустить с помощью контекстного меню дерева построения.
Во-вторых, редактирование всех трехмерных операций (включая дополнительные операции, команды создания массивов и вспомогательных объектов) запускается двойным щелчком кнопкой мыши. Например, чтобы изменить настройки операции выдавливания, дважды щелкните на одной из граней, полученной в результате выполнения этой операции. Двойным щелчком можно также запустить редактирование эскизов, но поскольку в большинстве случаев они жестко привязаны к геометрии модели, по ним очень трудно попасть при двойном щелчке. Пытаясь щелкнуть на эскизе, вы, скорее всего, запустите процесс редактирования другого объекта. По этой причине эскизы лучше редактировать, используя команду Редактировать контекстного меню дерева построения.
Настройки операций можно изменять с помощью элементов управления на панели свойств или, в отдельных случаях, используя характерные точки фантомного изображения.
Вспомогательная геометрия и трехмерные кривые
Надеюсь, вы уже хорошо освоили принцип создания трехмерных моделей в КОМПАС: все построение детали состоит из последовательного рисования эскизов и выполнения над ними (или же без них) формообразующих операций. Все вроде бы понятно, но, возможно, вас уже посещала мысль о том, что использовать ортогональные плоскости в качестве опорных явно недостаточно, а грани самой детали лишь в редких случаях могут служить подходящими базовыми плоскостями. Если вы еще не задумывались над этим вопросом, то попробуйте представить себе разработку какого-либо сложного изделия с помощью всего лишь трех ортогональных плоскостей. Это просто невозможно!
Как угодно разместить в пространстве модель плоскости для эскиза можно, используя вспомогательные объекты.
В системе КОМПАС-3D предусмотрено несколько типов вспомогательных объектов. Основные из них – конструктивные плоскости и конструктивные оси.
Конструктивные плоскости, как было отмечено, служат для определенного размещения эскиза в пространстве. Например, при помощи операции вырезания необходимо создать отверстие с осью, которая не перпендикулярна грани элемента, «приклеенного» выдавливанием. В таком случае вы не сможете использовать грань этого элемента в качестве опорной плоскости под эскиз. Для создания такого отверстия вам придется строить вспомогательную конструктивную плоскость под определенным углом, в которой и разместить эскиз.
Конструктивные оси обычно используются при создании массивов элементов, например для указания геометрической оси массива по концентрической сетке или направления в массиве по параллелограммной сетке (команда Массив по сетке) и т. п.
Команды для создания перечисленных элементов находятся на панели инструментов Вспомогательная геометрия (рис. 3.31).
Рис. 3.31. Панель Вспомогательная геометрия
Кроме инструментов для построения плоскостей и осей на этой панели присутствует команда Линия разъема
предназначенная для разбиения одной грани на несколько путем добавления ребер, а также группа из двух команд для создания контрольных точек трубопроводов (в книге они не рассматриваются).
Команды для построения вспомогательных осей (первая группа кнопок на панели Вспомогательная геометрия) включают следующие инструменты.
Ось через две вершины – создает ось через две вершины, которые указываются прямо на модели (ими могут быть вершины тела модели или пространственные точки).
Ось на пересечении плоскостей – строит ось на пересечении двух непараллельных плоскостей или плоских граней. Для построения конструктивной оси достаточно просто указать эти плоскости в дереве построения или в окне представления модели.
Ось конической поверхности – создает ось автоматически после указания в окне модели конической или цилиндрической грани.
Ось через ребро – строит ось, совпадающую с указанным прямолинейным ребром в модели.
Примечание
Если при построении любой оси на специальной панели управления нажата кнопка Автосоздание, то для подтверждения формирования оси не нужно каждый раз нажимать кнопку Создать объект. Выполнив необходимые условия конкретной команды (например, указав две плоскости для команды Ось на пересечении плоскостей или щелкнув на цилиндрической поверхности для команды Ось конической поверхности), вы сразу получите вспомогательную ось (убедиться в этом можно, просмотрев дерево построений). Не забывайте об этом, иначе вы можете сделать несколько одинаковых осей сразу, поскольку после автоматического создания выполнение текущей команды не завершается.
Вспомогательных плоскостей в системе намного больше, чем вспомогательных осей.
Смещенная плоскость – наверное, одна из самых востребованных команд вспомогательной геометрии. Именно этим инструментом мы будем пользоваться чаще всего при построении моделей, рассматриваемых в примерах. Она предназначена для создания вспомогательной плоскости, смещенной от указанной плоскости или плоской грани на определенное расстояние. Для построения такой плоскости необходимо сначала указать базовую плоскость или грань, после чего задать величину и направление смещения (рис. 3.32). Величину и направление смещения можно указать на панели свойств или с помощью перетаскивания характерной точки.
Рис. 3.32. Создание смещенной плоскости (параллельно плоскости XY)
Плоскость через три вершины – строит плоскость по трем указанным в модели вершинам. Вершинами могут быть как концы ребер (вершины тела модели), так и трехмерные точки в пространстве.
Плоскость под углом к другой плоскости – также часто употребляемая команда. Она позволяет строить плоскость, проходящую через прямолинейное ребро под заданным углом к базовой (указанной пользователем) плоскости.
Плоскость через ребро и вершину – плоскость строится подобно выполненной по трем вершинам, только вместо двух вершин указывается прямолинейное ребро.
Плоскость через вершину параллельно другой плоскости – плоскость строится через любую указанную в пространстве модели точку (трехмерную точку, вершину) и параллельно любой другой плоскости либо плоской грани.
Плоскость через вершину перпендикулярно ребру – плоскость создается перпендикулярно прямолинейному ребру (или оси). Для ее фиксации вдоль ребра необходимо указать произвольную точку, не лежащую на ребре. Эта точка будет принадлежать создаваемой плоскости и тем самым определит ее точное размещение в пространстве.
Нормальная плоскость – создает одну или несколько плоскостей, нормальных к цилиндрической или конической поверхности детали.
Касательная плоскость – плоскость строится касательно к указанной цилиндрической или конической поверхности. Для точного позиционирования вспомогательной плоскости необходимо также задать плоскую грань или плоскость, нормальную к цилиндрической или конической поверхности (то есть проходящую через ее ось).
Плоскость через ребро параллельно/перпендикулярно другому ребру – формирует вспомогательную плоскость, проходящую через первое указанное в модели ребро параллельно или перпендикулярно другому ребру. На панели свойств с помощью переключателя Положение плоскости можно задать, параллельно или перпендикулярно будет проходить плоскость. Данная вспомогательная плоскость используется редко.
Плоскость через ребро параллельно/перпендикулярно грани – действие команды аналогично предыдущей, только плоскость размещается параллельно или перпендикулярно не ребру, а выделенной грани.
Средняя плоскость – позволяет построить вспомогательную плоскость-биссектрису двугранного угла и иногда бывает очень полезной (рис. 3.33). Для построения такой плоскости достаточно указать две плоские грани или плоскости. Если заданные грани непараллельны, то построенная плоскость пройдет через линию их пересечения и будет размещена под одинаковым углом к каждой из них (бисекторная плоскость). В противном случае построенная плоскость будет точно посредине между двумя параллельными гранями или плоскостями.
Рис. 3.33. Построение средней плоскости между двумя ортогональными плоскостями: XY и ZX
Чаще всего из приведенных команд используются первые две и последняя, другие – значительно реже. Однако вы должны хорошо представлять себе, что предлагает система в качестве вспомогательного инструментария, поскольку в непростых ситуациях это может подсказать вам тот или иной способ построения сложной модели.
Трехмерные кривые – это тоже своего рода вспомогательные объекты. Они редко применяются самостоятельно. Как правило, они являются направляющими траекториями для кинематических операций, конструктивными осями при копировании по массиву и пр. Команды для построения трехмерных кривых находятся на панели инструментов Пространственные кривые (рис. 3.34), входящей в состав компактной панели. Панель Пространственные кривые также содержит команду для построения точки в трехмерном пространстве модели (трехмерные точки могут использоваться при построении вспомогательных осей, плоскостей и трехмерных кривых).
Рис. 3.34. Панель инструментов Пространственные кривые
С помощью команд этой панели инструментов вы можете строить различные трехмерные кривые.
Спираль цилиндрическая – служит для создания пространственной цилиндрической спирали. Для построения объекта необходимо указать опорную плоскость спирали (плоскость, с которой начнется построение витков спирали), задать координаты центра спирали (точку пересечения оси спирали с опорной плоскостью), а также диаметр витков. После этого необходимо указать собственно характеристики спирали. Это можно сделать, выбрав один из трех способов построения: по количеству витков и шагу; по количеству витков и высоте; по шагу витков и высоте.
Кроме того, можно задать направление построения спирали (по какую сторону от опорной плоскости) и направление навивки витков (левое или правое).
Спираль коническая – эта кривая строится аналогично цилиндрической спирали, за исключением того, что при задании диаметра витков придется указывать или диаметр верхнего и нижнего витков, или диаметр нижнего витка и угол наклона (угла конусности) спирали.
Ломаная – создает пространственную ломаную по точкам в модели. Отдельные сегменты ломаной можно строить перпендикулярно или параллельно объекту, указанному в окне модели.
Сплайн – строит пространственный сплайн. Команда бывает очень полезна при моделировании прокладки трубопроводов, линий электропередач, электрических жгутов и пр.
На первый взгляд может показаться, что функций для создания пространственных кривых слишком мало, однако, поверьте, этих четырех команд достаточно, чтобы сформировать в модели даже самую сложную кривую.
Поскольку в сборке есть также формообразующие операции (вырезание, команда Отверстие, копирование по массиву), которые при выполнении также требуют применения различных вспомогательных объектов, то все перечисленные в этом разделе команды доступны и в документе КОМПАС-Сборка.
И последняя команда, о которой хочу упомянуть в этом разделе, хотя она не относится к вспомогательным, – Условное изображение резьбы
панели Элементы оформления. Она предназначается для создания условного обозначения резьбы на валах или в отверстиях. Почему условного? Все дело в том, что любые сложные трехмерные объекты с криволинейными гранями весьма существенно «утяжеляют» (то есть замедляют работу, просмотр, редактирование документа) модель, особенно многокомпонентную сборку. К таким объектам относятся 3D-модели пружин, спиралей, изделий из проволоки со сложной конфигурацией и т. п., а также изображение резьбы. Как правило, в любой сборке крепежных элементов (болтов, винтов, гаек и пр.) отверстий под них всегда больше, чем других деталей. Представьте себе, что было бы, если бы на каждом, даже самом маленьком, болтике было трехмерное изображение резьбы. Большую сборку невозможно было бы даже вращать, не то что редактировать! Кроме того, как известно, весь крепеж стандартизирован. Никто при проектировании не изобретает новые болты с нестандартными шапочками или параметрами резьбы. Исходя из этого, можно сделать вывод, что само изображение резьбы в модели не столь важно. Тем не менее, по требованию тех же стандартов, на чертеже обязательно должно быть обозначение резьбы.
Именно поэтому в программе КОМПАС-3D (да и в других системах проектирования) было введено условное изображение резьбы, которая при моделировании отображается цилиндрическим контуром (рис. 3.35), а на ассоциативном чертеже – по всем правилам ГОСТ.
Рис. 3.35. Условное изображение резьбы
Примечание
Другие команды панели Элементы оформления, касающиеся создания трехмерных размеров и обозначений, будут рассмотрены в конце главы на практическом примере.
Свойства трехмерных объектов
Все трехмерные объекты КОМПАС-3D наделены определенными свойствами. Общими для всех объектов, независимо от их типа, являются следующие свойства:
• наименование – это название трехмерного объекта (эскиза, операции, вспомогательной плоскости, детали, сборки и пр.). Наименование, которое система присваивает автоматически (например, Эскиз:1, Операция вращения:2), пользователь может изменить, обозначив принадлежность или назначение трехмерного элемента в модели. Наименование отображается в дереве построения модели возле значка каждой операции или элемента;
• видимость – это свойство управляет отображением трехмерного объекта в документе (скрытый или видимый). Переключение с невидимого на видимый режим осуществляется с помощью команд контекстного меню дерева построения: Показать и Скрыть соответственно;
• состояние – любой объект может быть включен или исключен из расчета. При исключенном из расчета элементе модель перестраивается так, как будто этого элемента вообще нет. Для управления состоянием также применяются команды контекстного меню дерева построения: Включить в расчет и Исключить из расчета;
• цвет – задает цвет объекта в модели. Это свойство недоступно только для значка начала системы координат, каждая стрелка которого имеет свой предустановленный цвет (ось X – красный, ось Y – зеленый, ось Z – синий). Цвет трехмерного объекта выбирается из раскрывающегося списка Цвет на вкладке Свойства панели свойств при создании каждого объекта. Если представленные в списке цвета вас не устраивают (в нем всего 40 цветов), вы можете воспользоваться стандартным диалоговым окном выбора цвета операционной системы Windows, в котором указать произвольный цвет. При задании цвета объекта вы также можете установить флажок Использовать цвет детали, в результате чего объект будет иметь тот же цвет, который задан для всей детали.
Полагаю, вы уже обращали внимание на еще одну команду контекстного меню, вызываемого в дереве построений, которая ранее не упоминалась в книге, – команда Свойства. С ее помощью вы получаете доступ ко всем свойствам данного объекта (как типичным – наименование, цвет и пр., так и специфическим).
У конструктивных плоскостей и осей обозначения начала системы координат модели и эскизов специфических свойств нет. У всех трехмерных операций, кроме перечисленных выше основных, есть еще особая группа свойств, существенно влияющих на отображение результатов этих операций в модели. Речь идет об оптических свойствах трехмерных элементов. Настраивать эти свойства можно на панели Оптические свойства (рис. 3.36) после выполнения команды Свойства контекстного меню (или прямо во время создания формообразующего элемента).
Рис. 3.36. Свойства трехмерного элемента на панели свойств
Примечание
Панель Оптические свойства и раскрывающийся список Цвет доступны, только если на панели свойств снят флажок Использовать цвет детали. В противном случае все настройки оптических свойств конкретного объекта (операции), как и его цвет, совпадают с соответствующими настройками всей детали.
Свойства материала детали настраиваются на панели Оптические свойства с помощью ползунков (значение каждого параметра задается в процентах). При изменении одного или нескольких свойств результат сразу будет отображен на демонстрационном шаре, размещенном в верхней части панели:
• Общий цвет – задает насыщенность цвета объекта;
• Диффузия – характеризует способность материала поглощать световые лучи;
• Зеркальность – управляет отражением света от поверхности объекта (0 – поверхность полностью матовая);
• Блеск – отвечает за размеры светового блика на поверхности детали (0 – размер светового пятна максимален);
• Прозрачность – задает прозрачность материала детали (0 – материал полностью непрозрачен, 100 – «идеальное» стекло). Управление этим свойством позволяет создавать материал наподобие стекла или полупрозрачного пластика;
• Излучение – характеризует способность собственного излучения материала (0 – материал не излучает свет). Этому параметру необходимо задавать максимальное значение при моделировании лампочек, светильников и т. д.
Используя цвет и оптические свойства, вы легко можете сделать деталь разноцветной, назначая отдельным операциям разные цвета и придавая им различные оптические свойства.
Кроме описанных свойств (оптические, наименование, видимость, состояние и цвет), деталь как целостный объект имеет еще несколько специфических.
• Обозначение – конструкторское обозначение конкретной детали, принятое на данном предприятии. Заполняется на панели свойств и позже может быть передано в ассоциативный чертеж модели.
• Наименование материала – название материала детали (марка стали, сплав, тип древесины и пр.). Название материала можно выбрать из небольшого списка, предоставляемого КОМПАС, или из огромного перечня библиотеки материалов и сортаментов (конечно, если она у вас установлена). По умолчанию в качестве материала детали используется Сталь 10 ГОСТ 1050—88.
• Плотность – плотность выбранного материала (г/см3). Если вы вставляете материал из списка КОМПАС или выбираете из библиотеки материалов и сортаментов, то значение этого свойства устанавливается автоматически.
В режиме сборки (то есть после вхождения какой-либо детали в состав сборки) у детали появляются дополнительные свойства. Их можно настроить после выполнения команды Свойства контекстного меню, вызванной для компонента сборки.
• Использовать цвет сборки – этому свойству отвечает одноименный флажок на панели свойств. При установленном флажке вся деталь закрашивается цветом, заданным для всей сборки.
• Использовать цвет источника – компонент сборки получает все цветовые и оптические настройки детали-источника. Чтобы можно было использовать флажок Использовать цвет сборки, флажок Использовать цвет источника должен быть снят.
• Фиксация – данное свойство указывает, зафиксирован или нет компонент в пространстве сборки. Зафиксированный компонент прочно закреплен в пространстве: его нельзя ни переместить, ни повернуть без снятия фиксации.
Сборка имеет значительно меньше свойств: наименование, обозначение, цвет и оптические свойства. Цвет и оптические свойства сборки зачастую не имеют никакого значения, поскольку цвета компонентов сборки лучше брать с деталей-источников. Это позволит избежать лишней путаницы в многокомпонентных сборках.
Я думаю, описанного выше достаточно, чтобы иметь представление о свойствах трехмерных объектов КОМПАС-3D. Теперь рассмотрим процесс создания трехмерных сборок подробнее.
Создание сборок
Как уже неоднократно отмечалось, сборка – это трехмерная модель объекта, состоящая из нескольких деталей. Количество деталей в сборке не ограничено. Даже если в сборке всего одна деталь, она все равно считается сборкой. Известны трехмерные сборки, насчитывающие до нескольких тысяч компонентов. Компонентом сборки может быть твердотельная или листовая деталь КОМПАС-3D, вставленная в сборку или созданная прямо в ней, собственное тело или тела, принадлежащие документу сборки, трехмерный библиотечный элемент, деталь или поверхность, импортированные из другой системы трехмерного моделирования (с помощью одного из обменных форматов), а также другая сборка (в таком случае она называется подсборкой). В сборке, как вы поняли, также можно выполнять формообразующие операции, которые используются при построении деталей, и, самое главное, – формировать массивы компонентов.
Процесс формирования трехмерной сборки в системе КОМПАС-3D V10 состоит из нескольких этапов.
1. Вставка компонентов сборки (отдельных деталей из файлов или стандартных элементов из библиотек). Отдельные компоненты могут создаваться прямо в сборке.
2. Размещение каждого компонента определенным образом и задание нужной ориентации в пространстве сборки, а также при необходимости фиксация компонента.
3. Создание отдельных деталей прямо в сборке (не путать с созданием компонента в контексте сборки), то есть тел, которые будут сохранены вместе с файлом сборки.
4. Применение завершающих операций, таких как создание отверстий, фасок и пр., которые стали доступны для выполнения в документе сборки в десятой версии КОМПАС-3D.
Внимание!
Ни в коем случае не нужно путать процесс создания компонентов сборки в контексте сборки с построением тел прямо в сборке. Первая функциональная возможность существовала в программе уже достаточно давно и заключалась в построении отдельной детали в документе сборки в режиме так называемого контекстного редактирования (таким образом, пользователь имел возможность привязываться к уже существующим компонентам). Второй процесс стал возможен лишь в КОМПАС-3D V10. Суть его заключается в том, что в сборке создается отдельное тело или тела, которые не имеют собственных файлов, а хранятся непосредственно в документе сборки. Такие компоненты зафиксированы – их нельзя перемещать или сопрягать в пространстве с другими (вставленными) компонентами. Однако, с другой стороны, данный подход дает огромное преимущество в использовании формообразующих операций, которые ранее были возможны только в детали (например, создание фасок).
Чаще всего вставка и размещение компонента выполняются одновременно. Создание отдельных тел и доработка самой сборки выполняются при необходимости в отдельных случаях.
Основные команды для управления объектами сборки размещены на панели инструментов Редактирование сборки (рис. 3.37). По умолчанию эта панель расположена первой на компактной панели инструментов для активного документа КОМПАС-Сборка.
Рис. 3.37. Панель инструментов Редактирование сборки
Примечание
Состав компактной панели для документа КОМПАС-Сборка практически не отличается от состава компактной панели для документа КОМПАС-Деталь. Разница заключается в том, что на компактной панели для документа КОМПАС-Сборка есть панели инструментов Редактирование сборки и Сопряжения и нет панелей Условные обозначения и Элементы листового тела.
Первой на этой панели идет группа кнопок, содержащая всего две команды для создания компонентов сборки «на месте», то есть непосредственно в текущей сборке. Команда Создать деталь
служит для построения детали в так называемом режиме редактирования детали в сборке. Так называется процесс построения новой или изменения формы уже вставленной детали прямо в окне текущей сборки. При этом редактируемый компонент (активный) отображается синим цветом, а все остальные компоненты сборки (пассивные) – зеленым. Цвета контекстного редактирования детали в сборке можно настроить на вкладке Система окна Параметры (раздел Редактор моделей → Редактирование).
Кнопка Создать деталь активна, только если в сборке выделен хотя бы один плоский объект. После вызова этой команды появляется стандартное диалоговое окно сохранения файла, в котором вы должны указать имя и путь к файлу создаваемой детали. После этого система переходит в режим редактирования детали в сборке (при этом на панели Текущее состояние нажата кнопка Редактировать на месте
) и одновременно запускается команда создания эскиза на выбранной плоской грани или плоскости. Компактная панель принимает вид, свойственный документу КОМПАС-Деталь, после чего вы можете приступать к построению детали прямо в сборке. Для завершения построения детали и возвращения к нормальному режиму работы со сборкой отожмите кнопку Редактировать на месте.
Чтобы отредактировать уже существующую деталь, выделите ее в дереве построения или окне представления модели и нажмите кнопку Редактировать на месте. Запустится режим редактирования детали, в котором вы можете вносить в деталь любые изменения. Для завершения редактирования отожмите кнопку Редактировать на месте. Все изменения, выполненные в режиме редактирования детали в сборке, будут переданы в файл модели детали.
Вторая команда этой группы – Создать сборку
После нажатия данной кнопки, как и для детали, появится окно сохранения файла, в котором следует выбрать путь, по которому будет сохранен файл, и ввести имя создаваемой подсборки. Система перейдет в режим редактирования, только уже не детали в сборке, а подсборки в текущей сборке. Этот режим по внешним признакам ничем не отличается от такого же режима для создания или редактирования детали, однако компактная панель не изменит свой вид – ее состав останется типичным для документа КОМПАС-Сборка. В этом режиме вы можете наполнять подсборку любыми деталями точно так же, как и основную сборку, размещать и сопрягать добавленные компоненты. Для завершения редактирования опять же следует отжать кнопку Редактировать на месте. В дереве построения основной сборки появится новый узел, в состав которого будут входить все компоненты, добавленные в только что созданную сборку.
Вообще, оба описанных метода (создания детали или подсборки в контексте текущей сборки) применяются довольно редко. Немного чаще используется редактирование уже готовой детали в сборке. Однако главным способом формирования сборки является простое добавление полностью готовой детали из файла и ее размещение в трехмерной сцене. Для этой цели предназначена кнопка Добавить из файла
Перед окончательной фиксацией точки вставки компонента из файла он отображается в виде фантома, который можно свободно перемещать в пространстве модели. Причем при вставке детали фантом полностью отвечает форме добавляемой детали, а при вставке сборки фантом представляет собой лишь ее габаритный параллелепипед. Для вставки компонента достаточно просто щелкнуть в нужной точке окна документа. Первый компонент сборки после вставки всегда автоматически фиксируется, все последующие – нет.
Совет
Не старайтесь сразу точно попасть в нужную точку пространства сборки, где должен размещаться центр локальной системы координат добавляемого объекта. Как правило, точно попасть в эту точку просто невозможно (за исключением случаев, когда вам заранее известны ее координаты, и вы можете ввести их вручную или вы имеете возможность привязаться к какой-либо характерной точке сборки – вершине или началу координат). В большинстве случаев модель просто вставляется в любую точку пространства, после чего с помощью команд поворота, перемещения и наложения сопряжений должным образом размещается в сборке.
Для изменения положения компонента в сборке существуют команды перемещения и поворота.
Переместить компонент – предназначена для перемещения (без изменения ориентации) компонента сборки. Для перемещения достаточно щелкнуть на данной кнопке (при этом указатель примет форму четырехнаправленной стрелки), нажать кнопку мыши на нужном объекте и переместить его. Передвигать можно сразу несколько компонентов, предварительно выбрав их в окне модели или дереве построения. Во время перемещения можно включить режим контроля соударений, при котором система будет информировать вас о столкновении перемещаемой детали или подсборки с другими компонентами сборки. Точно разместить компонент в трехмерном пространстве с помощью перемещения невозможно, однако вы можете использовать автосопряжение (автоматическое наложение сопряжений между перемещаемым компонентом и близлежащими трехмерными объектами сборки). Переместить зафиксированный компонент нельзя.
Повернуть компонент – позволяет вращать (изменять ориентацию в пространстве) выбранный компонент вокруг центральной точки его габаритного параллелепипеда.
Повернуть компонент вокруг оси – дает возможность вращать выбранный компонент сборки вокруг оси или прямолинейного ребра (ребро может принадлежать вращаемому компоненту).
Повернуть компонент вокруг точки – служит для вращения компонента сборки вокруг вершины или трехмерной точки.
Все три кнопки, предназначенные для вращения, объединены в одну группу. При вращении компонентов, как и при их перемещении, можно включить режимы контроля соударений и автосопряжений.
Кнопки перемещения и вращения компонентов неактивны, если в сборке еще нет ни одного вставленного объекта. Кроме того, чтобы стали доступными команды вращения вокруг оси или точки, в модели должен быть выделен соответствующий трехмерный элемент.
Следующие группы кнопок реализуют формообразующие операции, доступные в сборке. Все эти команды полностью идентичны своим аналогам в документе КОМПАС-Деталь, за исключением команд создания массивов. Принцип работы данных команд тот же, но базовым элементом для копирования является не трехмерный элемент детали, а компонент (или компоненты) сборки.
Примечание
Все изменения в форме деталей, полученные вследствие применения формообразующих операций (например, вырезания) в сборке, не передаются в файлы моделей. Имеется в виду, что сами детали остаются такими же, какими были до выполнения операций.
Кроме того, в группе кнопок для создания массивов в сборке, по сравнению с деталью, добавилась одна команда – Массив по образцу
Она предназначается для построения массива компонентов сборки, который точно повторяет указанный массив-образец в детали, то есть копии базового компонента размещаются в узлах элементов массива-образца. Порядок работы с командой таков. Сначала вы указываете компоненты для копирования, затем выбираете в дереве модели в одном из узлов, отвечающем любой вставленной детали, массив, по подобию которого желаете разместить копии. Команда Массив по образцу очень полезна, когда вам необходимо разместить в сборке элементы крепежа в отверстиях, созданных с помощью одной из команд построения массивов в детали (например, крепежные винты в отверстиях фиксирующей крышки подшипника).
Последняя команда панели инструментов Редактирование сборки – Новый чертеж из модели
Она создает новый документ КОМПАС-Чертеж, содержащий ассоциативный вид с модели, для которой эта команда была вызвана. Перед вставкой вида в чертеж необходимо выбрать ориентацию модели, по которой будет сформирован вид, ввести имя и номер вида. При создании чертежа используются настройки по умолчанию (формат, ориентация и пр.). Но, как вы уже знаете, их совсем не сложно поменять с помощью Менеджера документа.
Удобным средством, позволяющим управлять состоянием компонентов сборки, является контекстное меню, которое можно вызвать в дереве построения (рис. 3.38). С помощью команд этого меню вы можете управлять видимостью компонента, устанавливать или снимать фиксацию с него, удалять компонент. Используя команду Редактировать на месте, вы можете запустить процесс контекстного редактирования выделенного компонента. Команда Редактировать в окне открывает новое окно (файл), в котором вы можете редактировать выбранную деталь или подсборку.
Рис. 3.38. Контекстное меню компонента сборки
Выше уже неоднократно упоминалось, что после размещения детали в сборке ее необходимо точно расположить относительно других компонентов сборки (например, привести зубчатые колеса передачи в зацепление, насадить колесо или подшипник на вал и т. п.). В автоматизированном проектировании это называется «наложить сопряжения на компоненты». На одну и ту же деталь можно наложить сразу несколько сопряжений. Иногда из-за ошибки проектировщика или при неправильном перестроении сборки действия некоторых сопряжений противоречат друг другу (то есть система не может разместить компонент таким образом, чтобы удовлетворить требованиям сразу нескольких сопряжений). При этом возникает ошибка – деталь не будет расположена должным образом, а в дереве построений соответствующая ветвь будет отмечена восклицательным знаком в красном кружке. Все сопряжения, наложенные на компоненты сборки, отображаются в дереве построения в одном узле под названием Группа сопряжений. Этот узел находится в самом низу дерева сборки.
Все функции для создания различных типов сопряжений представлены на панели инструментов Сопряжения (рис. 3.39).
Рис. 3.39. Панель инструментов Сопряжения
Параллельность – размещает деталь таким образом, чтобы ее выбранная грань (ребро) была параллельна плоской грани (ребру) другого компонента сборки. Порядок наложения сопряжения: вызываете команду и по очереди указываете элементы, которые необходимо разместить параллельно. Если элементы выбраны правильно и накладываемое сопряжение не конфликтует с другими сопряжениями, то сборка будет перестроена, а выбранные элементы окажутся параллельными друг другу.
Перпендикулярность – действие этого сопряжения подобно установлению параллельности, только выбранные элементы моделей (плоские грани или прямолинейные ребра) размещаются перпендикулярно.
На расстоянии – данный тип сопряжения употребляется чаще, чем два предыдущих, поскольку позволяет более точно задать относительное размещение компонентов. После вызова этой команды сначала указываются элементы двух компонентов, на которые накладывается сопряжение (плоские грани, ребра или вершины), после чего в поле Расстояние на панели свойств задается величина расстояния между компонентами. Если в качестве исходных элементов выбраны грани или ребра, то детали размещаются так, чтобы эти элементы оказались параллельны друг другу (и при этом удалены на заданное расстояние).
Под углом – позволяет разместить компоненты сборки таким образом, чтобы их элементы (грани или ребра), выбранные при вызове команды, находились под определенным углом. С помощью кнопок в группе Ориентация на панели свойств можно задавать направление отсчета угла.
Касание – устанавливает касание выбранных элементов. Следует отметить, что это не означает обязательный контакт двух тел. Например, если при вызове этой команды были указаны плоская и сферическая грани двух деталей, размещенных достаточно далеко одна от другой, то сборка перестроится так, что сферическая грань будет касаться плоскости (условной), в которой лежит плоская грань.
Соосность – одно из двух наиболее употребляемых сопряжений. Позволяет установить соосность выбранных элементов: осей, цилиндрических или конических граней. Эта команда применяется для посадки деталей на вал, центрирования отверстий в разных деталях, установки элементов крепежа (вставки болтов и винтов в отверстия, насадки шайб и гаек на болты и пр.).
Совпадение объектов – второе из наиболее используемых сопряжений. Служит для размещения деталей таким образом, чтобы они соприкасались по указанным при вызове команды граням или ребрам. Этот тип сопряжений позволяет установить, например, опорные поверхности шапочек болтов точно на поверхности одной из соединяемых деталей, упереть колесо, шкив или звездочку, посаженные на вал, в буртик вала и т. п.
Совет
При наложении сопряжений одна из деталей всегда остается недвижимой, а другая изменяет свое положение в процессе перестроения сборки. Иногда по ошибке или по невнимательности можно задать сопрягаемые компоненты в неправильной последовательности, что приведет к непредвиденному перестроению сборки. По этой причине перед наложением сопряжений всегда лучше фиксировать компоненты, которые должны оставаться неподвижными. Советую всегда фиксировать тот компонент, который вообще не предполагается больше перемещать в пространстве сборки.
Наложение слишком большого количества сопряжений на пару деталей чревато ошибками при перестроении сборки или при добавлении новых сопряжений. По данной причине лучше применять только самые необходимые сопряжения (обычно хватает сопряжений Соосность и Совпадение объектов). Для этого при вставке новой детали из файла в сборку следует стараться разместить ее как можно ближе к тому месту, где она должна быть зафиксирована в сборке. Используйте команды вращения и перемещения компонентов для того, чтобы придать как можно более точное положение в пространстве компоненту без применения сопряжений, и лишь после этого накладывайте сопряжения.
После того как детали зафиксированы и их взаимное размещение вас полностью устраивает, сопряжения можно удалить. Однако не слишком увлекайтесь удалением сопряжений. Конечно, если вы на 100 % уверены, что такая-то деталь будет находиться в определенной точке пространства и ее точно не придется перемещать, то удаление сопряжений только упростит сборку и наложение новых сопряжений на другие компоненты. Вместе с тем некоторые сборочные единицы часто уже после их сборки в модели приходится перемещать или сопрягать как один объект (например, зубчатое колесо всегда насажено на вал, венец червячного колеса – на обод и т. д.). Сопряжения между такими компонентами не рекомендуется удалять, поскольку вы никогда заранее не знаете, как их придется перемещать. Например, при наложении сопряжения Соосность и Совпадение между цилиндрическими поверхностями вала под колесо и отверстием в колесе вы можете перемещать (сопрягать с другими деталями) один вал. При перестроении сборки сработают сопряжения, наложенные на пару вал – колесо, и колесо останется насаженным на вал при любых его перемещениях или изменениях ориентации.
Использование переменных и выражений в моделях
Развитие технологий постоянно предъявляет все более жесткие требования к инженеру-конструктору. На первое место в современном конструировании выходят скорость и динамичность выполнения проектов (чертежей или моделей) в графическом редакторе, а также возможность быстрого внесения в них изменений при необходимости. Причем все это не должно отражаться на качестве выполняемых работ. Наверное, каждому инженеру приходилось не раз сталкиваться с задачей создания чертежа или модели на основе уже существующего, когда, казалось бы, детали не очень различаются, но перерисовывать нужно все заново. Для решения этой проблемы существуют специальные средства, с помощью которых можно задать определенные связи между отдельными компонентами графического элемента или модели, позволяющие при последующей разработке типовых конструкций не переделывать всю модель, а изменить лишь несколько параметров. Процесс задания таких зависимостей называется параметризацией объекта. Параметризация разрешает многократно использовать один раз построенную модель и значительно сокращает время на формирование новых ее модификаций.
Суть параметризации состоит в том, что пользователь может присваивать переменные состоянию трехмерных объектов, а также их характерным параметрам (например, величине выдавливания, уклона, угла вращения, размерам геометрических примитивов эскизов и т. п.). Эти переменные можно вводить в различные выражения в специальном редакторе формул, устанавливая определенные математические зависимости между ними так, чтобы при изменении одного (или нескольких) параметров автоматически изменялись все остальные переменные модели. В результате получится параметрическая модель, для создания типовых модификаций которой достаточно просто изменить значение одной или нескольких переменных.
Примечание
Здесь идет речь о параметризации трехмерных моделей, включая двухмерные изображения в эскизах операций. Параметризацию можно также использовать и в графических документах, однако такое встречается крайне редко.
Параметризация трехмерной модели начинается с параметризации эскизов трехмерных операций. Команды для наложения параметрических зависимостей между элементами плоского изображения находятся на панели инструментов Параметризация (рис. 3.40). Эта панель доступна на компактной панели инструментов при создании или редактировании эскиза.
Рис. 3.40. Панель инструментов Параметризация
Используя команды этой панели, на графические объекты можно накладывать ограничения по горизонтали, вертикали, устанавливать совпадение или выравнивание характерных точек, фиксировать положение точек, жестко задавать положение размера и пр. Мы не будем детально рассматривать эти команды, потому что при включенной параметризации эскиза ограничения на объекты накладываются автоматически. Установка ограничений, которые будут накладываться при вводе геометрических объектов, производится на вкладке Новые документы окна Параметры в разделе Модель → Эскиз → Параметризация (рис. 3.41).
Рис. 3.41. Установка ограничений, автоматически накладываемых на графические объекты эскиза
Автоматическая параметризация очень удобна. Фактически, система выполняет большую часть работы по наложению ограничений, вам же остается только нанести размеры на эскиз, назначить переменные и установить зависимости между ними. Однако при автоматической параметризации могут возникнуть непредвиденные проблемы. Например, после параметризации эскиза и попытки изменить один из размеров программа выдает сообщение, что система не имеет решений. Многих пользователей это приводит в тупик, поскольку далее они ничего не могут сделать с эскизом. На самом деле в этом сообщении нет ничего страшного: система просто уведомляет вас о том, что на параметризированный графический объект наложены лишние ограничения, которые и не позволяют изменить его размер. Достаточно просто удалить лишнее ограничение, и двухмерное изображение будет корректно перестраиваться. Просмотреть и удалить ограничения можно с помощью команды Показать/удалить ограничения
панели инструментов Параметризация. После нажатия данной кнопки выберите объект с наложенными ограничениями (щелкните на нем в документе), после чего на панели свойств должен отобразиться список его ограничений (рис. 3.42), в котором следует выделить и удалить все лишнее.
Рис. 3.42. Список ограничений графического объекта
Совет
Если после удаления ограничений графический объект все равно не желает перестраиваться, это значит, что на все изображение наложено слишком много ограничений. В таком случае их лучше удалить все сразу и заново параметризировать объект. Для удаления всех параметрических связей служит команда Удалить все ограничения
После нажатия данной кнопки, выделяя по очереди каждый объект и вызывая команду Параметризовать объекты
установите требуемые типы ограничений вручную. Точно так же (с помощью команды Параметризовать объекты) необходимо параметризировать эскиз, если во время его вычерчивания в настройках была полностью отключена параметризация.
Рассмотрим практический пример разработки несложной параметрической модели.
Создайте новый документ КОМПАС-Деталь и сразу сохраните его под именем Параметризация.m3d. Убедитесь в окне Параметры, что в системе включена полная параметризация эскизов, после чего можно приступать к построению.
1. Запустите создание эскиза, в качестве базовой плоскости которого выберите XY. Нажмите кнопку Прямоугольник по центру и вершине на панели инструментов Геометрия и постройте квадрат с центром в точке начала координат и длиной стороны 48 мм. Если у вас была включена параметризация, то система должна автоматически наложить на созданное изображение следующие ограничения:
· совпадение точек отрезков-сторон квадрата в его вершинах;
· горизонтальность – на горизонтальные отрезки (стороны) квадрата;
· вертикальность – на вертикальные отрезки.
Чтобы убедиться в этом, выделите любой отрезок и выполните команду Показать/удалить ограничения контекстного меню.
2. Теперь необходимо задать переменные для изображения эскиза так, чтобы при изменении одной из них квадрат перестраивался, сохраняя положение своего центра и равенство длин сторон. Для этого перейдите на панель инструментов Размеры и нажмите кнопку Линейный размер. На панели свойств в группе кнопок Тип нажмите кнопку Вертикальный, чтобы включить создание вертикального размера. Установите размер от центра квадрата, совместив первую точку размера с точкой начала координат, до его верхней горизонтальной стороны, привязав вторую точку к вершине квадрата (рис. 3.43).
Рис. 3.43. Простановка первого параметрического размера
Поскольку на геометрические объекты наложены ограничения, после фиксации размера система сразу предложит установить его значение и присвоить ему переменную (рис. 3.44). Назовите эту переменную b, а ее значение пока оставьте таким, какое есть (равное половине длины стороны квадрата). На размере немного ниже размерной надписи в скобках будет отображено имя, присвоенное размеру переменной.
Рис. 3.44. Присвоение значения и имени переменной параметризированного размера
Примечание
Отредактировать значение или имя переменной можно, дважды щелкнув на размерной надписи параметризированного размера или нажав кнопку Установить значение размера
на панели инструментов Параметризация.
Теперь немного отвлечемся от документа детали. Для задания параметрических зависимостей между переменными как чертежа, так и модели, в КОМПАС-3D существует специальное окно – редактор формул. Оно вызывается с помощью кнопки Переменные
панели инструментов Стандартная или команды меню Вид → Панели инструментов → Переменные. В этом окне отображаются все переменные, которые были присвоены параметризированным размерам графического документа, эскиза или модели. В нем также задаются значения этих переменных и вводятся формулы, по которым они будут рассчитываться. Окно редактора формул может быть зафиксировано у одной из сторон главного окна программы, отображаться в плавающем состоянии (то есть скрываться за границей окна, когда неактивно), размещаться свободно в пределах главного окна или вообще не отображаться на экране. По умолчанию окно переменных закрыто.
1. Не выходя из режима редактирования эскиза, вызовите окно Переменные и убедитесь, что в нем автоматически появилась добавленная в эскизе переменная b (рис. 3.45).
Рис. 3.45. Окно Переменные
2. Вернитесь в окно документа детали и добавьте еще один размер, фиксирующий расстояние от центра квадрата до его вертикальной стороны (назовите ее переменной b_), а также два линейных размера, обозначающих длину сторон квадрата (присвойте этим размерам переменные a и a_) (рис. 3.46). Новые переменные должны сразу появиться в списке переменных эскиза на вкладке Переменные окна редактора формул. В столбце Выражение редактора формул напротив переменных b_ и a_ введите имена переменных b и a, чтобы сделать их равными.
Рис. 3.46. Параметризированный эскиз
3. Если вы сейчас измените значения этих переменных, то объект перестроится, но не сохранит форму квадрата. Это объясняется тем, что переменные пока не связаны между собой. Чтобы задать определенную зависимость между ними, в столбце Выражение редактора формул напротив переменной a введите выражение 2*b (рис. 3.47). После этого можете изменять значение переменной b параметризированного эскиза, и при этом квадрат будет правильно перестраиваться.
Рис. 3.47. Задание выражения для переменной
В столбце Выражение можно вводить уравнения, неравенства (например, чтобы ограничить какой-либо параметр), а также логические выражения типа a ? b : c (если a – истина, то выполняется оператор b, иначе – c). Уравнения или неравенства могут содержать математические выражения неограниченной сложности, включающие любые математические функции. Синтаксис уравнений, неравенств и логических выражений подобен синтаксису языка программирования C (если вы с ним сталкивались, то у вас не возникнет сложностей при вводе формул). Подробно с требованиями к написанию формул вы можете ознакомиться в справочной документации к системе КОМПАС-3D.
4. Завершите редактирование эскиза, отжав кнопку Эскиз на панели инструментов Текущее состояние.
5. Щелкните на кнопке Операция выдавливания панели инструментов Редактирование детали и выдавите эскиз на 48 мм в прямом направлении. В результате вы должны получить куб.
6. Теперь посмотрите в окно Переменные. В нем значительно увеличилось количество переменных. Это переменные, позволяющие исключить из расчета тот или иной трехмерный элемент модели (плоскость, операцию, эскиз), переменные операций (в нашем случае – величина выдавливания и угол уклона), а также внешние переменные эскизов. Чтобы использовать все эти переменные в выражениях, им сначала лучше присвоить псевдонимы (в столбце Выражение таблицы переменных). Напротив переменной v29 (такое значение было по умолчанию присвоено величине выдавливания) операции выдавливания введите имя переменной h. Переменная автоматически добавится в верхнюю часть списка переменных (рис. 3.48). Переменной h сразу поставьте в соответствие переменную a (поставив переменную a в столбце Значение напротив переменной h). Обратите внимание, что при выполнении трехмерной операции все параметрические размеры эскиза отображаются на экране. Такое новшество стало доступно пользователям десятой версии программы.
Рис. 3.48. Переменные модели
Примечание
Переменные детали также можно сделать внешними. Тогда они будут видны в редакторе формул для сборки. Чтобы сделать переменную внешней, ее необходимо выделить и выполнить команду контекстного меню Внешняя.
7. В результате выполненных действий мы получили полностью параметризированную модель куба. Измените значение переменной b в списке переменных эскиза и нажмите кнопку Перестроить
на панели инструментов Вид. Модель куба перестроится, и при этом значения его параметров изменятся таким образом, чтобы ребро куба равнялось 2 · b.
8. Немного усложним модель и добавим на все грани куба скругления радиусом 5 мм (рис. 3.49).
Рис. 3.49. Скругление ребер параметрического куба
В окне Переменные появятся новые переменные операции скругления, среди которых и радиус скругления. Задайте этой переменной выражение b/4 (рис. 3.50).
Рис. 3.50. Добавление переменных и выражений в модели
9. Измените еще раз значение b и убедитесь, что модель перестраивается полностью, включая эскиз, операцию выдавливания и скругления. Не забывайте перестраивать модель после каждого изменения значения переменной. Вы можете изучить разработанную модель, открыв файл Параметризация.m3d, который находится в папке Examples\Глава 3 прилагаемого к книге компакт-диска.
Думаю, нет смысла дальше развивать пример. Аналогичным образом вы можете строить сколь угодно сложные трехмерные модели (как сборки, так и детали) и параметризировать их, начиная от изображения эскиза и заканчивая размещением компонентов сборки. Использование параметризации вместе со средствами создания ассоциативных чертежей позволяет в десятки раз сократить время подготовки конструкторской документации, особенно если вы часто сталкиваетесь с проектированием типовых изделий. Конечно, на создание сложного параметрического чертежа или модели уйдет намного больше времени, ведь реальные изделия гораздо сложнее кубов со скругленными ребрами, однако при последующей разработке типовых моделей вы сможете сэкономить очень много времени. Другими словами, если вы уверены, что ваша деталь уникальна, не будет видоизменяться, служить прототипом для других изделий или использоваться другими проектировщиками, параметризацию в модели лучше отключить, чтобы лишние ограничения не мешали работать. Однако если вы считаете, что деталь или сборка, которую вы выполняете, может эффективно использоваться в последующих разработках – не бойтесь потратить лишнее время на создание полной параметрической модели. Поверьте, это окупится с лихвой.
Однако перед тем, как перейти к практическому моделированию, справедливо будет отметить, что редактор формул версии V10, как и сам принцип работы с переменными, существенно отличается от предыдущих версий программы.
Во-первых, появилась возможность присваивать значение переменной в модели другой переменной, взятой с совершенно другой модели, таким образом, связывая эти переменные.
Во-вторых, состав колонок редактора формул данной версии программы КОМПАС-3D изменен, кроме того, теперь не обязательно присваивать переменным псевдонимы – все они участвуют в выражениях под своими именами (ранее в КОМПАС-3D необходимо было обязательно вводить псевдоним для переменных параметров модели).
В третьих, для работы с эскизом теперь используется тот же редактор формул, что и для работы с целой моделью (то есть все переменные эскиза сразу видны в модели). Ранее переменные из эскиза не отображались в редакторе формул после выхода из режима редактирования эскиза. Чтобы работать с такими переменными, их сначала нужно было объявить внешними в эскизе.
А самое главное – появилась возможность формирования таблиц переменных. Таблица переменных – это таблица предопределенных значений переменных модели, хранящаяся в отдельном файле. Ее можно открывать из редактора переменных, выбирать определенный ряд значений и присваивать его переменным модели. Данная возможность позволяет формировать различные конфигурации какого-либо изделия, если большинство его параметров изменяются дискретно и имеют строго нормированные значения.
Более подробно о работе с переменными в КОМПАС-3D V10 вы можете узнать, используя справку к программе.