КОМПАС-3D V10 на 100 % — страница 15 из 25

На практике нередко возникают неординарные задачи, которые очень непросто решить в системе твердотельного моделирования, но которые, в силу определенных обстоятельств, приходится выполнять именно в таких системах. Причин тому может быть много. Возможно, под рукой нет другого CAD-редактора с развитым поверхностным моделированием, или он есть, но вы недостаточно разбираетесь в нем, а времени на рассматривание примеров и изучение справки катастрофически не хватает. А может быть, вы просто не желаете изменять своим привычкам и расставаться со своей любимой графической системой. В любом случае задача сводится к выполнению в трехмерном редакторе моделей, которые очень непросто, на первый взгляд даже невозможно, выполнить. В этом разделе рассмотрим примеры создания в КОМПАС-3D объектов, которые очень сложно выполнить средствами твердотельного моделирования.

Пружины

Любая пружина доставляет немало хлопот любому проектировщику независимо от того, создает он ее чертеж или трехмерную модель. К счастью, на больших сборочных чертежах пружины отрисовываются условно, но в модели (сборке) приходится выполнять полноценную модель. Вместе с КОМПАС-3D поставляется библиотека КОМПАС-Spring, специально предназначенная для расчета и проектирования различных типов пружин (сжатия, растяжения, тарельчатых), а также для автоматической генерации их чертежей или трехмерных моделей. Однако очень часто приходится моделировать какие-то особые разновидности пружин, которые не содержатся в библиотеке. К тому же, научиться самому разрабатывать различные модели пружин очень полезно, поскольку при их построении используются различные интересные подходы.

В качестве первого примера рассмотрим процесс создания трехмерной модели обычной пружины растяжения с двумя боковыми зацепами. Размеры пружины будем брать произвольными, поскольку в данном случае нам значительно важнее сам процесс моделирования, а не характеристики готовой модели.

Создайте документ КОМПАС-Деталь и сразу сохраните его на диск под именем Пружина растяжения.m3d, после чего можете приступать к построению.

1. Выделите в дереве детали ортогональную плоскость XY, перейдите на панель инструментов Пространственные кривые и нажмите кнопку Спираль цилиндрическая. На вкладках панели свойств установите параметры спирали:

· способ построения спирали – По числу витков и шагу;

· количество витков – 10 шт.;

· шаг витков – 6 мм;

· направление построения – прямое;

· направление навивки – правое;

· диаметр витков – 30 мм.

Нажмите кнопку Создать объект, чтобы завершить построение трехмерной кривой.

2. Выделите плоскость ZX и запустите процесс создания эскиза. Постройте окружность с центром в точке с координатами (15; 0) и радиусом 2,99 мм. Эта окружность будет служить эскизом сечения витка пружины. Координаты центра в плоскости эскиза выбраны с таким расчетом, чтобы начало витков спирали лежало точно в центре окружности. Радиус (чуть менее половины шага спирали) выбран с расчетом того, чтобы витки пружины плотно прилегали друг к другу, но не касались (напомню, мы моделируем пружину растяжения). Хотя можно задавать окружности немного меньший радиус.

3. Завершив построение эскиза, вызовите команду Кинематическая операция. В качестве эскиза для нее укажите эскиз с окружностью, а в качестве направляющей – цилиндрическую спираль. Создайте операцию и отключите видимость спирали-направляющей (рис. 3.131).

Рис. 3.131. Формирование витков пружины


Теперь необходимо «приклеить» с обеих сторон витков зацепы. Для этого необходимо будет сформировать трехмерную кривую, которая бы повторяла изгиб зацепа и брала начало на плоскости, где закончились (оборвались) витки. Я говорю об одной кривой, поскольку второй зацеп полностью симметричен, и если мы сможем выполнить его с одной стороны витков, то его создание на другой стороне не должно вызвать никаких затруднений.

1. Сделайте активной плоскость XY. Нажмите кнопку Эскиз на панели Текущее состояние. С помощью команды Дуга панели Геометрия создайте в эскизе сегмент окружности радиусом 15 мм, начальным углом 0° и конечным углом 90°. Активизируйте панель инструментов Поверхности, нажав одноименную кнопку на компактной панели. Вызовите команду Поверхность выдавливания, которая создаст криволинейную поверхность, выдавив эскиз в прямом направлении. Величину выдавливания задайте не меньше 100 мм (рис. 3.132).

Рис. 3.132. Поверхность выдавливания


2. Постройте еще один эскиз на плоскости ZX. В нем поместите полуокружность радиусом 15 мм, с координатами центра (15; –75) и выпуклой частью вверх. Завершите редактирование эскиза. Перейдите на панель Вспомогательная геометрия и нажмите кнопку Линия разъема. На панели свойств выберите прямое направление проецирования линий эскиза и укажите внутреннюю грань поверхности, после чего создайте операцию. В результате на криволинейной поверхности (указанной грани) вы получите ребро, которое является результатом проецирования полуокружности на поверхность выдавливания (рис. 3.133).

Рис. 3.133. Полуокружность в эскизе и ребро на поверхности, полученное с помощью команды Линия разъема


3. Сразу создайте еще один эскиз с полуокружностью, но на этот раз в плоскости ZY. Центр полуокружности должен иметь координаты (-75; 0), а радиус, как обычно, 15 мм. Выпуклость дуги должна быть направлена в сторону, противоположную положительному направлению оси X эскиза. Как видите, окончание ребра-проекции на поверхности выдавливания точно совпадает с началом полуокружности в последнем эскизе.

4. Создайте еще один эскиз на плоской грани среза витка пружины (эта грань лежит в плоскости ZX и совпадает с плоскостью эскиза полуокружности, на основе которого была сформирована линия разъема). В эскизе должна быть окружность, точно очерчивающая контуры разреза витка (координаты центра – (15; –60), радиус – 2,99 мм).

5. Вызовите команду Кинематическая операция, для которой в качестве формообразующего эскиза укажите окружность на срезе витка (последний созданный нами эскиз), а в качестве направляющих – ребро, полученное проекцией полуокружности на поверхность выдавливания, и эскиз полуокружности в плоскости ZY. Очень важно, чтобы эскиз полуокружности и ребро, рассекающее поверхность, были созданы правильно (то есть чтобы их концы совпадали), иначе вы не сможете выполнить кинематическое добавление материала. Обратите внимание также на порядок указания кривых в окне модели: сначала ребро, за ним кривую в эскизе. Это также имеет очень большое значение для кинематических операций, направляющая которых состоит из нескольких трехмерных кривых. В результате создания операции вы получите зацеп на одном из концов пружины (рис. 3.134).

Рис. 3.134. Выполнение зацепа в пружине растяжения


6. Постройте такой же зацеп на другом конце витков пружины (вам придется создать еще одну поверхность, потом линию разъема на ней и т. д.) и, главное, – не забудьте отключить видимость (скрыть) поверхность выдавливания и эскизы полуокружностей верхнего и нижнего зацепов. Полученная модель пружины показана на рис. 3.135.

Рис. 3.135. 3D-модель пружины растяжения


Файл этой модели Пружина растяжения.m3d находится на прилагаемом к книге компакт-диске в папке Examples\Глава 3\Пружины.

Во втором примере рассмотрим разработку более сложной модели. Это будет пружина, продольная ось которой имеет форму кольца (рис. 3.136). Это именно тот случай, когда при виде чертежа возникают мысли о том, что инструментарий КОМПАС-3D здесь бессилен. Однако, как вы увидите, с помощью гибкого воображения и знания инструментария КОМПАС-3D такую деталь можно смоделировать и в этой программе, причем затратив на это даже меньше операций, чем в предыдущем примере.

Рис. 3.136. Кольцевая пружина


Создайте новый документ-деталь и сохраните его на жесткий диск под именем Кольцевая пружина.m3d.

1. Начните создание эскиза на плоскости XY. Сначала постройте вспомогательную окружность (инструмент Окружность панели Геометрия, стиль линии – Вспомогательная) диаметром 50 мм и с центром в начале локальной системы координат эскиза. На этой окружности создайте еще одну окружность стилем линии Основная с координатами центра (0; 25) и диаметром 2 мм (это будет сечение витка на внешнем диаметре пружины). Имя этого эскиза – Эскиз:1. Он показан на рис. 3.137, а.

Выйдите из режима редактирования эскиза и сразу снова запустите процесс создания эскиза на этой же плоскости. Как и в предыдущем эскизе, постройте вспомогательную окружность, только уже диаметром 40 мм (таким примем диаметр размещения сечений внутренних витков кольцевой пружины). Теперь предположим, что наша пружина будет состоять из 40 витков. Напомню, размеры сейчас не столь важны, поэтому вы можете принять любое другое значение. При этом угловой шаг витка спирали будет равен 360 : 40 = 9°, из чего следует, что сечение витка на внутренней окружности должно быть смещено относительно первого сечения на угол 4, 5° (между сечениями полвитка). Исходя из приведенных соображений, построим две вспомогательных прямых: первую с помощью команды Вертикальная прямая, привязываясь к началу координат эскиза, вторую – с помощью команды Вспомогательная прямая, проложив ее через начало координат под углом 4, 5° к вертикальной прямой. Для создания второй линии достаточно будет указать одну ее точку (начало координат), после чего задать угол смещения 85, 5° в поле Угол на панели свойств, и зафиксировать прямую. Постройте эскиз витка (окружность диаметром 2 мм) с центром в точке пересечения второй вспомогательной линии и окружности (рис. 3.137, б). Завершите построение эскиза, отжав кнопку Эскиз. Теперь создайте еще один точно такой же эскиз в модели. Эти эскизы имеют имена Эскиз:2 и Эскиз:3.

Выполните третий эскиз на плоскости XY. В нем постройте вспомогательную окружность диаметром 50 мм и две вспомогательные линии: одну вертикальную, а вторую под углом 9° к ней (то есть под углом 81° к горизонтали). На пересечении вспомогательной окружности и наклонной прямой постройте еще одно сечение витка (рис. 3.137, в). Этому эскизу система присвоила имя Эскиз:4.

Рис. 3.137. Эскизы сечений кольцевой пружины


2. Создайте еще два эскиза в плоскости ZY. Оба должны содержать полуокружность, выполненную с помощью команды Дуга панели Геометрия. Координаты центра дуги – (0; –22,5), радиус – 2,5 мм, начальный угол 90°, конечный угол 270°. Различие в эскизах заключается только в направлении построений дуг (по или против часовой стрелки), то есть в эскизах должно быть различное направление выпуклостей дуг. Пусть эскиз с направлением построения дуги по часовой стрелке имеет имя Эскиз:5, а с направлением против часовой стрелки, соответственно, Эскиз:6.

3. С эскизами мы, наконец, покончили, пора перейти к собственно построению тела модели. Вызовите команду Операция по сечениям панели Редактирование детали. На панели свойств нажмите кнопку Сечения, после чего в дереве построения щелкните на первом и втором эскизах (Эскиз:1 и Эскиз:2), содержащих сечения витков пружины. Если сейчас создать операцию, то вы получите абсолютно плоский элемент, поскольку оба эскиза лежат в одной плоскости. Однако для операции по сечениям можно указывать траекторию, как и для кинематических операций (просто при формировании тела по эскизам траектория не всегда обязательна). Для этого щелкните на кнопке Осевая линия на панели свойств и укажите в дереве модели Эскиз:6. Теперь можно создать операцию (рис. 3.138, а).

Вызовите еще раз команду Операция по сечениям, в качестве сечений для которой задайте Эскиз:3 и Эскиз:4, а в качестве траектории – Эскиз:5. Выполните операцию, и вы получите вторую половину витка пружины (рис. 3.138, б). Сразу спрячьте оба эскиза-направляющих.

Рис. 3.138. Виток кольцевой пружины: полувиток-основание (а), приклеивание второй половины витка (б)


4. Создайте вспомогательную ось на пересечении плоскостей ZX и ZY (команда Ось на пересечении плоскостей панели Вспомогательная геометрия) – эта ось будет перпендикулярна плоскости XY и проходить будет через начало координат модели. Выполните команду Массив по концентрической сетке панели Редактирование детали. В качестве оси массива задайте конструктивную ось на пересечении плоскостей, а объектами для копирования будут служить две операции по сечениям, формирующие виток пружины. Количество копий по окружности, как вы уже догадались, должно равняться 40. Задав все параметры, нажмите кнопку Создать объект и получите готовую пружину (рис. 3.139). Осталось только спрятать конструктивную ось и сохранить изменения в документе.

Рис. 3.139. 3D-модель кольцевой пружины


Примечание

Данная модель является объектом сложной геометрии, поэтому формирование массива по концентрической сетке на компьютерах с низкой производительностью может занять очень много времени.

Файл модели кольцевой пружины Кольцевая пружина.m3d находится в папке Examples\Глава 3\Пружины компакт-диска, прилагаемого к книге.

Червячное зацепление

Червячное зацепление – это один из тех типов механических передач, трехмерную модель которых выполнить совсем не просто даже опытному конструктору. В отличие от зубчатого цилиндрического зацепления, где хоть и были некоторые проблемы, но в целом принцип построения был очевиден, в червячном зацеплении все далеко не так просто. Более того, большинство конструкторских приложений (плагинов) к CAD-системам реализуют построение только цилиндрического зацепления. Я встречал очень мало программных продуктов, которые автоматически рассчитывают и строят модель червячной передачи. По этой причине данный пример, в котором описано, как правильно строить модели деталей, входящих в червячное зацепление, очень важен для любого инженера.

Предположим, необходимо спроектировать модель червячного зацепления со следующими параметрами:

• передаваемый вращающий момент – 2200 Н · м;

• угловая скорость червяного колеса – 2,5 с-1;

• передаточное число передачи u – 25;

• степень точности передачи nст – 8;

• количество заходов червяка zч – 2;

• коэффициент диаметра червяка q – 10;

• модуль зацепления m – 8 мм;

• размещение червяка – верхнее.

В результате проектных расчетов были получены следующие значения параметров и характеристики передачи (как и в примере с редуктором, все исходные и расчетные данные абсолютно достоверны):

• количество зубьев колеса zк – 50;

• межосевое расстояние передачи aω– 240 мм;

• делительный диаметр колеса dк – 400 мм;

• делительный диаметр червяка dч – 80 мм;

• ширина зубчатого венца колеса bк – 72 мм;

• длина нарезной части червяка bч – 112 мм;

• угол подъема линии витка γ – 11,31°.

Моделирование начнем с червяка, так как это более простая деталь.

Создайте документ КОМПАС-Деталь, установите ориентацию Изометрия XYZ и сохраните документ на жесткий диск под именем Вал-червяк.m3d.

Основание вала-червяка будет выполнено вращением эскиза половины контура сечения. Для удобства последующей сборки этот эскиз следует разместить так, чтобы вал был смещен вверх по оси Yна величину межосевого расстояния. Диаметр и длину ступеней вала можете задать произвольными, важно лишь выдержать размеры нарезной части червяка: ее ширина 112 мм, а внешний диаметр 96 мм (dч + 2 · m). Эскиз должен размещаться в плоскости ZY.

Порядок построения эскиза контура вала-червяка:

1. Постройте две вспомогательных вертикальных линии, равноудаленных в обе стороны от начала координат на расстояние 56 мм (bч/2).

2. С помощью кнопки Осевая линия по двум точкам панели Обозначения постройте горизонтальную осевую операции вращения. Ординаты обоих концов отрезка осевой должны быть равны –240 мм (поскольку при установлении ориентации по нормали к плоскости эскиза КОМПАС переворачивает модель, то смещение эскиза должно осуществляться вниз по оси Y в эскизе).

3. Вызовите команду Параллельная прямая панели Геометрия и создайте вспомогательную горизонтальную линию выше осевой на 40 мм (половина внешнего диаметра витков червяка). Через точки пересечения этой прямой и двух вертикальных прямых постройте еще две вспомогательных линии, наклоненные к вертикали под углом 20° (половина угла профиля витка червяка).

4. Постройте еще 3–4 горизонтальных прямых, смещенных вверх от осевой. Они будут обозначать контуры ступеней вала. Рекомендую принять следующие значения диаметров: 32,36, 40 и 45 мм (смещать линии нужно на половину величины приведенных значений).

Сетка вспомогательных линий на эскизе должна выглядеть, как на рис. 3.140.

Рис. 3.140. Вспомогательная геометрия при построении эскиза контура вала-червяка


Привязываясь к узлам этой сетки, постройте контур вала-червяка (рис. 3.141) и выполните команду Операция вращения панели Редактирование детали. На эскизе лучше сразу выполнить все скругления и фаски, а в параметрах трехмерной операции не забудьте отключить создание тонкой стенки.

Рис. 3.141. Эскиз контура вала-червяка


Витки вала-червяка можно сформировать с помощью кинематического вырезания. В качестве траектории вырезания следует взять цилиндрическую спираль и так подобрать значения ее параметров, чтобы угол подъема спирали был равен углу подъема витков червяка, а ее диаметр – делительному диаметру червяка. Суть сборки заключается в определении такого положения эскиза для кинематической операции, чтобы после вырезания витки червяка вошли точно между зубьями червячного колеса (считаем, что на вертикальной оси червячного колеса мы построим вырез между зубьями). В этом случае не нужно изощряться и придумывать, где его разместить, как это было при построении зубчатого колеса, – смещение эскиза несложно рассчитать аналитически. Расстояние, на которое необходимо сместить эскиз от вертикальной осевой (линии, соединяющей центр колеса с центром червяка), можно принимать равным 2,5 · P или 3, 5 · P, где P – шаг витков червяка (P = π · m, где m – модуль червячного зацепления). Желательно использовать значение с запасом (3, 5 · P), чтобы эскиз точно вышел за пределы нарезной части червяка.

Выполните создание в плоскости ZY эскиза выреза между витками вала-червяка (рис. 3.142).

Рис. 3.142. Эскиз выреза между витками червяка


Для этого выполните следующее:

1. Постройте две вертикальных вспомогательных прямых: первую через точку начала локальной системы координат эскиза, вторую (линия симметрии будущего смещенного эскиза выреза между витками) – левее первой прямой на 87, 92 мм (3, 5 · P).

2. Создайте четыре горизонтальных вспомогательных прямых: первая должна совпадать с осью вала-червяка (ордината – –240), остальные три обозначают диаметр впадин, вершин и делительный диаметр витков червяка (соответственно выше первой прямой на 30,40 и 48 мм).

3. Постройте вспомогательную линию, пересекающую горизонтальную прямую, которая обозначает делительный диаметр. Эту линию нужно создать в точке, которая лежит левее на 6, 28 мм (P/4) от линии симметрии выреза между витками, и наклонить под углом 70° к горизонтали (см. рис. 3.142). Для этого вы можете воспользоваться командой Вспомогательная прямая панели Геометрия, предварительно создав на делительном диаметре точку, через которую должна пройти прямая. Смещение вспомогательной точки определено исходя из того, что расстояние вдоль оси червяка между точками пересечения делительного цилиндра и поверхностей выреза между витками равняется половине шага витков. Отсюда расстояние до точки, через которую должна пройти прямая, обозначающая контур выреза, до линии симметрии равно P/4.

4. Постройте отрезок от точки пересечения наклонной вспомогательной линии и диаметра впадин до точки пересечения этой же линии с диаметром вершин. Симметрично отобразите отрезок (выделите его и выполните команду Симметрия панели Редактирование) относительно линии симметрии эскиза. Соедините концы получившихся отрезков двумя вертикальными отрезками.

Выйдите из режима редактирования эскиза.

Эскиз для кинематического сечения мы уже выполнили. Теперь нужно создать траекторию, в качестве которой следует выполнить цилиндрическую спираль с углом подъема витков равным углу подъема витков червяка.

Для начала создадим вспомогательную плоскость (команда Смещенная плоскость панели Вспомогательная геометрия), удаленную на 87, 92 мм в обратном направлении от плоскости XY. Созданная плоскость будет опорной для спирали-направляющей и, как вы заметили, она проходит точно посередине изображения в эскизе выреза между витками червяка.

Перейдите на панель Пространственные кривые, выделите смещенную плоскость и нажмите кнопку Спираль цилиндрическая. Настройте следующие параметры спирали:

• способ построения – По шагу витков и высоте;

• шаг витков – 25, 12 мм (P = π · m);

• высота витков (задается параметром Высота спирали) – 176 мм (значение произвольно, оно определяется конструктивно с таким расчетом, чтобы витки спирали прошли через всю нарезную часть червяка);

• направление построения – прямое;

• направление навивки – правое;

• начальный угол – 270 (при таком угле первый виток начинается точно на плоскости эскиза выреза, что является обязательным условием для корректного выполнения кинематического вырезания);

• точка привязки спирали – имеет координаты (240; 0);

• диаметр спирали (задается на вкладке Диаметр) – равняется делительному диаметру червяка (80 мм).

Завершив построения спирали, выполните операцию Вырезать кинематически панели Редактирование детали. Думаю, не стоит расписывать, какие объекты указывать в качестве формообразующего эскиза и траектории. Не забудьте спрятать в модели спираль, поскольку она является лишь вспомогательным объектом, а также сохранить построенную модель. При желании на внешней ступени вала можете выполнить шпоночный паз (рис. 3.143).

Рис. 3.143. 3D-модель вала-червяка


Файл этой модели Вал-червяк.m3d находится на прилагаемом к книге компакт-диске в папке Examples\Глава 3\Червячное зацепление.

Перейдем к выполнению модели червячного колеса. Колесо в червяном зацеплении очень редко представляет собой единую деталь. Причина заключается в том, что из-за большого трения в точке зацепления материал колеса должен иметь хорошие антизадирные и антифрикционные свойства. Чаще всего в качестве такого материала используют безоловянистую и оловянистую бронзы. Однако изготовление целого колеса из такого дорогостоящего материала очень невыгодно, поэтому червячные колеса, как правило, выполняют составными: обод выполняют из бронзы, а ступицу – из более дешевого материала (чугун, конструкционные стали). Обод со ступицей соединяют с помощью напресовки, фиксируют винтами и пр. В связи с этим модель червячного колеса будет выполнена как сборка, а входящие в нее ступица и обод выполнены отдельными деталями.

Самая большая проблема при формировании венца червячного колеса – это сложность точного размещения эскиза выреза, так как в отличие от цилиндрических зубчатых колес, в которых эскиз всегда перпендикулярен оси колеса (даже в косозубых колесах), плоскость этого эскиза для червячного колеса «вращается» по спирали вокруг оси колеса. По этой причине единственное место, где можно без особого труда разместить эскиз выреза, – это средняя плоскость колеса, перпендикулярная его оси. Есть, конечно, один минус: вырезать теперь придется дважды – по одному разу в каждую сторону от колеса. Эскиз должен быть выполнен, как и для обычного зубчатого колеса (две эвольвенты или дуги, если мы создаем эскиз выреза упрощенно, и соединяющие их сверху и снизу дуги), при условии, что червячное колесо не имеет смещения. По своему опыту скажу, что верхнюю дугу лучше значительно выгнуть («поднять») вверх, чтоб в модели при вырезании не образовались ненужные кромки.

Вырезать нужно кинематически. Поскольку червячное колесо входит в зацепление с червяком, то вырезы в венце колеса будут формироваться по той же траектории, что и витки червяка, то есть угол наклона линии зуба венца равен углу подъема винтовой линии червяка.

Для построения модели обода необходимо дополнительно определить некоторые параметры червячного колеса. Я не буду акцентировать внимание на расчетных формулах и методиках расчета, типичных для университетского курса деталей машин, а приведу лишь конечные результаты:

• диаметр вершин зубьев колеса – 416 мм;

• диаметр впадин – 380 мм;

• наибольший диаметр колеса – 428 мм;

• толщина обода (расстояние от линии впадин зубьев до края обода в диаметральном направлении) – 15, 6 мм.

Создайте новый документ, установите в нем ориентацию Изометрия XYZ и запустите процесс выполнения эскиза в плоскости XY. В эскизе нужно будет выполнить контур профиля поперечного сечения обода червячного колеса (рис. 3.144).

Рис. 3.144. Эскиз контура сечения обода червячного колеса


Чтобы создать контур, постройте пять горизонтальных вспомогательных прямых: первые четыре должны быть смещены относительно оси X на величину половины наибольшего диаметра, диаметра вершин, делительного и диаметра впадин, последняя прямая – размещена ниже линии, обозначающей диаметр впадин на величину толщины обода. Создайте также три вертикальные линии: две равноудаленные от оси Y на расстояние 36 мм (bк/2) и одну, проходящую через начало координат эскиза. Проточку в ободе, в которую будет упираться выступ на диске ступицы, выполните конструктивно. Для построения дуги предварительно создайте вспомогательную окружность радиусом 32 мм и координатами центра (0; 240). С помощью команды Непрерывный ввод объектов панели Геометрия постройте контур обода (см. рис. 3.144). Выполните в контуре две фаски (4 x 45°) или во время выполнения команды Непрерывный ввод объектов, или с помощью операции Фаска панели Геометрия после создания контура. Добавьте в эскиз горизонтальный отрезок, выполненным стилем линии Осевая и проходящий через начало координат.

Основываясь на данном эскизе, выполните операцию вращения. Поскольку контур эскиза замкнут, то система по умолчанию предложит создавать сплошное твердое тело и вам не придется менять что-либо в настройках.

Теперь в плоскости ZY (средней продольной плоскости колеса) сформируем эскиз выреза между зубьями. Будем чертить эскиз немного упрощенно, заменяя эвольвенты дугами по трем точкам. Изображение профиля выреза создается аналогично выполнению эскизов зубчатого колеса и вала-шестерни.

Рисунок профиля выреза должен быть размещен в нижней части эскиза по следующей причине. Вы еще помните, что мы моделировали витки червяка таким образом, чтобы на оси, соединяющей центры колеса и червяка, в продольной плоскости сбоку червяка размещался виток, а в колесе, соответственно, вырез. Червяк в нашей модели устанавливается над колесом, это значит, что вырез между зубьями колеса, который будет в зацеплении с витком червяка и который мы позже будем копировать по окружности, должен располагаться сверху обода. Однако, поскольку при построении эскиза в плоскости ZY или параллельных ей плоскостях система переворачивает модель, то в самом эскизе изображение профиля должно находиться ниже оси абсцисс.

Перед вычерчиванием эскиза создайте три вспомогательных окружности, обозначающие диаметры впадин, выступов и делительный диаметр зубьев колеса. После этого с помощью команды Вспомогательная прямая панели Геометрия постройте набор линий, проходящих через центр локальной системы координат эскиза: одну – вертикальную и по три с каждой стороны от нее, смещенных между собой на угол γ /8, где γ = 360° / zк (напомню, что zк – количество зубьев червячного колеса). Используя команду Дуга по 3 точкам панели Геометрия, постройте контур выреза на пересечениях вспомогательных окружностей и линий (рис. 3.145, а).

Чтобы после кинематического вырезания эскиз срезал кромку зубьев при выходе из тела колеса, необходимо вместо верхней замыкающей окружности построить фигуру, показанную на рис. 3.145, б. Размеры отрезков произвольны, главное, чтобы оба боковые отрезка были касательными к дугам, заменяющим эвольвенты профиля зуба. Проследите, чтобы в сформированном контуре не было разрывов, и завершите редактирование эскиза.

Рис. 3.145. Построение эскиза профиля выреза между зубьями червячного колеса: контур выреза (а) и надстройка для удаления лишнего материала с краев зубьев (б)


Сейчас нам нужно построить направляющую для кинематического вырезания. Как было сказано ранее, их будет две, поскольку эскиз операции лежит в средней плоскости колеса, и вырезать будем два раза в обе стороны от эскиза.

В качестве направляющей снова возьмем спираль с такими параметрами:

• способ построения – По числу витков и высоте;

• базовая плоскость спирали – проходит через ось колеса, перпендикулярно оси червяка (в модели это плоскость XY);

• центр спирали (точка привязки) – точка пересечения оси червяка и базовой плоскости, то есть точка, лежащая на оси червяка и имеющая координаты (0; 240);

• начало витков – в плоскости эскиза, то есть в средней плоскости колеса, для каждой спирали определяется отдельно;

• диаметр спирали – делительный диаметр червяка (80 мм);

• угол подъема спирали – угол подъема винтовой линии червяка (из него вычисляется шаг);

• количество витков – 0,25.

Это настройки первой спирали. Точно такую же кривую надо построить по другую сторону от базовой плоскости (направление витков противоположное).

Однако, это все в идеале. В случае построения по описанному выше алгоритму, поднимаясь по спирали, эскиз «выходит» из тела венца, что приводит к тому, что вырезы сужаются на торцах колеса (зубья, соответственно, расширяются). При сборке такого колеса с червяком эти зубья врезаются в витки червяка на краях его нарезной части. Я решил эту проблему следующим образом: центр спирали необходимо немного сместить на величину x вверх от оси червяка, при этом диаметр спирали увеличить на 2x. Таким образом, зацепление не нарушается, а вырезание витков проходит по дугам чуть большего радиуса, чем прежде. Это приводит к тому, что эскиз не так резко будет подниматься вверх и сам подрежет кромки на торцах зубьев колеса. Описанную выше проблему можно было бы также решить, если бы во время кинематической операции можно было задавать уклон, как при операции выдавливания, но такой возможности пока в КОПМАС-3D, к сожалению, нет.

Исходя из всего вышеизложенного, попробуем построить спирали.

Выделите плоскость XY и запустите команду Спираль цилиндрическая панели Пространственные кривые. Выберите соответствующий способ построения и задайте количество витков равное 0,25. Ординату базовой точки увеличьте на 15 мм от требуемой (с 240 до 255 мм), а диаметр задайте равным 110 мм (на 30 мм больше делительного диаметра червяка), чтобы не нарушить зацепление. Для вычисления высоты спирали воспользуемся зависимостью h = P · n = π · m · n, где n – количество витков. Подставляя имеющиеся у нас значения, мы получим высоту спирали – 6, 283 мм. Все остальные настройки оставьте заданными по умолчанию и создайте спираль.

Постройте еще одну спираль на этой же плоскости. Точку привязки, количество витков, высоту, направление навивки витков и диаметр установите такими же, как и у предыдущего объекта, измените только направление построения с прямого на обратное. Если вы все правильно настроили, обе спирали должны сходиться в одной точке на плоскости эскиза профиля выреза между зубьями (рис. 3.146).

Рис. 3.146. Направляющая (две стыкующиеся дуги спиралей) для вырезания зубьев червячного колеса


Теперь дважды выполните операцию Вырезать кинематически панели Редактирование детали, используя эскиз профиля выреза и спирали-направляющие. Несмотря на то, что эскиз после выполнения первого выреза войдет в состав операции (в дереве модели будет дочерним узлом узла Вырезать кинематический элемент:1), вы можете использовать его повторно для формирования второго полувыреза. Постройте также четыре отверстия диаметром 10 мм в нижней части обода так, чтобы их центры лежали точно на окружности края обода (рис. 3.147). Отверстия создайте с помощью вырезания выдавливанием, эскиз операции разместите на торцевой поверхности колеса, а глубину выдавливания установите равной 25 мм.

Рис. 3.147. Первый вырез между зубьями червячного колеса и отверстие под фиксирующий винт


Создайте конструктивную ось конической поверхности (совпадающую с осью колеса), после чего с помощью операции Массив по концентрической сетке панели Редактирование детали сформируйте венец червячного колеса (рис. 3.148). Копировать необходимо обе кинематические операции, составляющие вырез между зубьями, количество копий в кольцевом направлении установить равным 50. Не забудьте скрыть все вспомогательные объекты в модели: обе спирали и конструктивную ось.

Рис. 3.148. 3D-модель обода червячного колеса


Теперь постройте модель ступицы и фиксирующего винта. Винт мы не вставляем из библиотеки, потому что после привинчивания обода к ступице головки винтов спиливаются, а сами винты после этого еще нужно и раскернить. По этой причине мы сразу смоделируем винт в спиленном состоянии.

Модель ступицы вы можете выполнить произвольно, не ограничивая себя какими-либо точными размерами, за исключением того, что верхняя часть эскиза вращения основания ступицы должна точно дополнять нижнюю часть аналогичного эскиза обода (рис. 3.149). Кроме того, выступ на диске ступицы, который входит в паз на ободе, должен быть чуть ниже, чем высота этого паза.

Рис. 3.149. Эскиз для создания основания ступицы червячного колеса


Добавьте в модель круглые вырезы в диске, шпоночный паз и отверстия под винты (их эскиз должен быть точно таким, как и в ободе), после чего сохраните модель на жесткий диск (рис. 3.150).

Рис. 3.150. 3D-модель ступицы червячного колеса


Все детали готовы, и вы можете приступить к сборке. Несмотря на то, что червячное колесо – это составная единица, очень редко в сборке приходится разбирать или перемещать входящие в него компоненты по отдельности. По этой причине советую сначала создать сборку Червячное колесо.a3d, в которой соединить обод и ступицу, а также создать массив по кругу из четырех винтов. Винт необходимо вставить так, чтобы он немного торчал над диском.

После этого создайте новую сборку под именем Червячное зацепление.a3d и соберите в ней червячное колесо с валом-червяком. Как и при сборке зубчатого зацепления, вам достаточно будет вставить модель червяка и сборку колеса в точку начала координат и зафиксировать их, поскольку мы изначально проектировали все детали передачи таким образом, чтобы зацепление получилось автоматически (рис. 3.151).

Рис. 3.151. 3D-модель червячной передачи с верхним размещением червяка


Файлы всех моделей, входящих в сборку червячного колеса, находятся на прилагаемом к книге компакт-диске в папке Examples\Глава 3\Червячное зацепление\Червячное колесо. Сам файл Червячное колесо.a3d и сборка всей передачи (файл Червячное зацепление.a3d) размещены в папке Examples\Глава 3\Червячное зацепление.

Модель из листового металла

Деталь, рассмотренная в данном примере, не обладает какими-либо особенностями. Этот пример приведен для того, чтобы продемонстрировать основные принципы и возможности модуля проектирования изделий из листового металла. Функционал этого модуля хоть и предназначен для построения твердых тел, но существенно отличается от прочих трехмерных формообразующих операций трехмерного редактора КОМПАС-3D. С его помощью можно получать модели, которые в реальном производстве изготавливаются с помощью гибки, ковки, штамповки и пр. Конечно, эти же модели можно выполнить и с помощью обычных трехмерных операций, однако команды панели Элементы листового тела позволяют строить их значительно быстрее, имитируя перечисленные выше процессы деформирования заготовок из листового металла.

Попробуем выполнить корпусную деталь какого-либо электроприбора или другого механизма. Точное назначение этой детали, как и ее размеры, нам сейчас не столь важны, главное – это научиться на практике применять функционал команд для создания листовых элементов.

1. Создайте новый документ КОМПАС-Деталь, сохраните его под именем Корпус (листовой металл).m3d, а на компактной панели активизируйте панель Элементы листового тела (мы будем работать с командами этой панели).

2. Создайте в эскизе на плоскости XY изображение прямоугольника, точка пересечения диагоналей которого должна совпадать с центром эскиза и размерами 120 × 60. Для этого можете воспользоваться командой Прямоугольник по центру и вершине на панели инструментов Геометрия. Выйдите из режима редактирования эскиза и нажмите кнопку Листовое тело, пока единственную активную на панели Элементы листового тела. На панели свойств ничего менять не надо, просто нажмите кнопку Создать объект – и вы получите листовую заготовку толщиной 1 мм.

3. Нажмите кнопку Сгиб, при этом в строке подсказок отобразится текст Укажите прямолинейное ребро. Щелкните на одном из ребер верхней грани листового тела. В окне представления появится фантом будущего сгиба.

Примечание

Операция Сгиб имеет большое количество настроек, позволяющих создавать разные и весьма оригинальные трехмерные элементы. Все параметры рассмотреть практически невозможно, поэтому по ходу выполнения примера будем ограничиваться лишь теми параметрами, которые нужны нам для построения. Если вы желаете самостоятельно разобраться в возможностях этой команды, можете сами попробовать изменять различные настройки.

Задайте радиус сгиба в одноименном поле равным 1 мм, а длину сгиба – 40 мм (рис. 3.152) и создайте элемент.

Рис. 3.152. Фантом трехмерного элемента при выполнении операции Сгиб


4. Постройте еще три таких же сгиба на оставшихся ребрах верхней грани плоского тела. Соответствующие параметры каждой операции (радиус и длина сгиба) устанавливайте одинаковыми для всех операций.

5. Нажмите кнопку Замыкание углов. В окне модели по очереди укажите стыки в верхней части сгибов, которые нужно замыкать. Обратите внимание, задать стык для замыкания можно, щелкнув кнопкой мышью только на цилиндрической части сгибов стыкуемых граней или на их общем ребре. Из раскрывающегося списка Способ замыкания на панели свойств выберите пункт Замыкание встык, а в списке Обработка угла – вариант Без обработки. Создайте операцию (рис. 3.153).

Рис. 3.153. Модель после замыкания углов на сгибах


6. Снова выполните команду Сгиб. В качестве опорного задайте верхнее ребро внутренней грани одного из сгибов (любого). На этот раз настройте параметры операции следующим образом. Из раскрывающегося списка Размещение выберите пункт По центру. После указания данного пункта справа от раскрывающегося списка появится поле Ширина сгиба. Задайте этому параметру значение 120 мм (то есть ширина сгиба – на 2 мм уже текущей ширины грани; до этого торец сгиба стал шире на 2 мм после замыкания углов). Длину и радиус сгиба установите равными 10 и 1 мм соответственно. Перейдите на вкладку Боковые стороны панели свойств. Нажмите кнопку Уклон и угол слева и в поле Уклон1 введите значение 45. Аналогичные действия выполните для правой стороны сгиба (кнопка Уклон и угол справа и поле Уклон2 ).

Создайте операцию. В результате вы должны получить следующий трехмерный элемент (рис. 3.154).

Рис. 3.154. Сгиб с особыми настройками


Создайте еще три таких сгиба на каждой из боковых стенок корпуса. Если вы все правильно настроили, то боковые стороны смежных сгибов у вас должны соприкасаться (рис. 3.155).

Рис. 3.155. Добавление сгибов в листовую деталь


7. Постройте еще один сгиб радиусом 1 мм и длиной 4, 5 мм на кромке загнутого листа корпуса вдоль длинной его стороны. В качестве способа размещения выберите По центру, а ширину сгиба установите равной 96 мм. Завершите выполнение операции. На ребре верхней грани сформированного элемента продолжите добавление сгибов таким образом, чтобы лист загибался наружу из корпуса. Установите размещение нового сгиба По всей длине, радиус сгиба – 0,5 мм, длину – 5 мм, а угол сгиба измените с 90° (по умолчанию) на 180°. Создайте операцию. В результате вы должны получить следующий трехмерный элемент в модели (рис. 3.156).

Рис. 3.156. Формирование сгиба материала под углом 180°


8. Теперь создайте сгиб на кромке корпуса вдоль короткой его стороны. Радиус сгиба задайте равным 0,5 мм, длину – 5 мм, а ширину (при выбранном способе построения По центру) – 36 мм.

9. На вертикальном ребре левой грани последнего сгиба постройте еще один сгиб длиной 4 мм и радиусом 1 мм. Если вы правильно задали все размеры, то последний добавленный элемент должен войти точно в щель между стенками сгиба на 180° вдоль длинной стороны корпусной детали (рис. 3.157, а). Создайте на внешней боковой грани эскиз сгиба на 180° небольшого отверстия (диаметр 1 мм) и выполните над ним операцию Вырез в листовом теле так, чтобы вследствие выреза образовалось сквозное отверстие в загнутых элементах детали (рис. 3.157, б). Для этого после вызова команды в группе кнопок переключателей нажмите кнопку До грани, после чего укажите в модели плоскую грань, до которой должен выполняться вырез. Расстояние вырезания установится автоматически (3 мм).

Рис. 3.157. Добавление новых сгибов (а) и сквозного отверстия (б)


10. Самостоятельно постройте аналогичные зацепы (см. рис. 3.157, б) на всех углах листовой детали.

11. Создайте очередной эскиз на внешней плоской грани нижней стенки корпуса (эта грань совпадает с плоскостью XY, с нее мы начинали построение детали). В эскизе постройте обычный прямоугольник и разместите его так, как показано на рис. 3.158, сверху. Повторюсь, размеры, как и точное положение данного эскиза, нам сейчас совсем не важны. Завершив построение изображения в эскизе, вызовите команду Закрытая штамповка. На панели свойств установите следующие значения параметров:

· высота штамповки – 2 мм;

· минимальный радиус скругления боковых ребер – 1 мм;

· радиус скругления основания – 1 мм;

· радиус скругления дна – 1 мм (чтобы был доступен соответствующий параметр, нужно установить флажок Скругление дна).

Создайте операцию (рис. 3.158, снизу).

Рис. 3.158. Эскиз (сверху) и результат выполнения операции Закрытая штамповка (снизу)


12. На этой же грани постройте еще два элемента штамповки чуть меньшего размера, симметричные относительно продольной оси детали. Для этого по очереди создайте два эскиза операции (контур обязательно должен быть замкнут) и дважды выполните команду Закрытая штамповка. Задайте такие же настройки операции, как и для первого элемента.

Примечание

На трехмерные элементы, сформированные при помощи команд создания и редактирования листовых деталей, не распространяются команды формирования массивов. По этой причине штамповку и прочие листовые элементы приходится формировать каждый отдельно.

13. Самостоятельно освойте команду Открытая штамповка, похожую на рассмотренную выше операцию Закрытая штамповка. Для этого на внешней грани нижней стенки детали создайте два эскиза, содержащих каждый по окружности (окружности должны быть симметричны относительно продольной оси). Затем, основываясь на каждом эскизе, выполните команду Открытая штамповка (рис. 3.159). Настройки операции можете оставить по умолчанию, а можете изменить по своему усмотрению. В основном они повторяют настройки команды Закрытая штамповка.

Рис. 3.159. Результат выполнения команды Открытая штамповка


Еще один интересный элемент, который можно выполнять в листовых деталях, – это жалюзи. Запустите процесс создания эскиза на внешней грани боковой стенки. В эскизе постройте 15–20 небольших вертикальных отрезков одинаковой длины, равноудаленных друг от друга. Вызовите команду Жалюзи и настройте ее следующим образом (точно следовать приведенными указаниями не обязательно, настройки будут зависеть от количества, длины и интервала между отрезками эскиза):

· направление построения – обратное;

· положение жалюзи – справа;

· высота и ширина – по 3 мм;

· радиус скругления основания – 2 мм;

· способ построения – вытяжка.

Для подтверждения создания трехмерного элемента нажмите кнопку Создать объект (рис. 3.160). Самостоятельно постройте такие же жалюзи на противоположной стенке корпуса (настройки те же, кроме положения жалюзи – они должны размещаться слева).

Рис. 3.160. Элемент листового тела – жалюзи


По своему усмотрению можете добавить на модель различные конструктивные элементы (отверстия, буртики и т. п.).

У листовых моделей есть одна очень интересная возможность: поскольку большинство элементов модели получено с помощью гибки, то саму деталь можно разогнуть, то есть получить модель листа, из которого деталь изготовлялась (так называемую развертку).

Предварительно необходимо задать параметры развертки: грань, которая будет оставаться неподвижной при развертывании детали, а также сгибы, которые следует разгибать (по умолчанию разгибаются все сгибы в модели). Для этого нажмите кнопку Параметры развертки на панели инструментов Элементы листового тела, а затем укажите неподвижную грань. В качестве этой грани следует принять одну из граней первой операции листового тела (ту, с которой начиналось построение). Сгибы выбирать не надо, так как нам необходима полная развертка, а именно ее система и предлагает по умолчанию. Нажмите кнопку Создать объект, чтобы окончательно установить параметры развертки.

После этого на панели Элементы листового тела станет доступной кнопка Развертка. Нажмите ее, и вы получите лист металла, из которого была сделана корпусная деталь (рис. 3.161).

Рис. 3.161. Листовая модель и ее развертка


Примечание

В развернутом состоянии с листовой моделью нельзя выполнять формообразующие операции или создавать на ней вспомогательные объекты.

Файл данной модели Корпус (листовой металл).m3d находится на прилагаемом к книге компакт-диске в папке Examples\Глава 3. Однако учтите, что этот файл можно будет открыть только в КОМПАС-3D не ниже версии V8, поскольку в более ранних версиях функционал редактора листовых моделей был значительно слабее.

Текст на цилиндре

Этот пример не имеет никакого отношения к машиностроению, но создание такого объекта часто обсуждалось на различных интернет-форумах, посвященных САПР и моделированию в машиностроении. Вообще, вопрос создания всевозможных декоративных элементов, в частности объемного текста, остро стоит для всех систем твердотельного моделирования, не только для КОМПАС-3D.

Пример специально размещен в конце главы, поскольку в нем показан принцип комбинирования абсолютно разных по назначению команд, а именно совместного использования команд построения листовых элементов и базовых формообразующих операций.

Итак, рассмотрим, как средствами только твердотельного моделирования построить выпуклый текст на цилиндрической поверхности.

1. Откройте новый документ-деталь и сразу сохраните его на диск под именем Текст на цилиндре.m3d.

2. На плоскости XY постройте эскиз, содержащий прямоугольник размером 100 × 336 мм, левый нижний угол которого разместите в точке начала координат эскиза. Перейдите на панель Элементы листового тела и нажмите кнопку Листовое тело. Толщину листа задайте равной 1 мм и создайте объект.

3. Выделите в модели верхнюю грань листового тела и запустите процесс построения эскиза. Активизируйте панель Обозначения и нажмите единственную активную на ней команду Текст. Укажите точку привязки текста ближе к левой вертикальной стороне прямоугольника и приблизительно посредине между верхней и нижней сторонами. В параметрах текста выберите шрифт Times New Roman, отмените курсивное отображение символов, щелкнув на нажатой кнопке Курсив, и установите размер шрифта с помощью параметра Высота символов равным 10 пт. В текстовом поле введите фразу КОМПАС-3D, после чего создайте текст (кнопка Создать объект на панели специального управления).

4. Нажмите кнопку Преобразовать в NURBS на панели Редактирование. Щелкните на тексте, чтобы преобразовать его в набор NURBS-кривых. Завершите выполнение команды.

5. Поскольку над эскизом предполагается выполнять вырезание выдавливанием, необходимо, чтобы в результате операции листовое тело не было разделено на несколько частей (а такое может быть, например, на буквах О, А, D и пр.). По этой причине изображение эскиза следует отредактировать так, чтобы «проблемные» места в буквах были соединены с остальной частью листа маленькой перемычкой. Готовый эскиз после редактирования показан на рис. 3.162.

Рис. 3.162. Эскиз текста для вырезания после редактирования «проблемных» букв


6. Примените к данному эскизу команду Вырезать выдавливанием. Установите прямое направление вырезания, а способ выдавливания – Через все.

7. Теперь создайте эскиз на нижней грани листового тела. В эскизе постройте единственный вертикальный отрезок так, чтобы его концы выходили за пределы листового тела, а сам он размещался перед началом вырезанной надписи.

8. Завершите редактирование эскиза и вызовите команду Сгиб по линии панели инструментов Элементы листового тела. По очереди в модели укажите ребро (отрезок в только что построенном эскизе) и грань для сгиба (грань, в котором лежит эскиз ребра). Остальные параметры настройте следующим образом:

· направление сгиба – прямое;

· неподвижная сторона – Сторона 1;

· угол сгиба – 180°;

· радиус сгиба – 50 мм;

· способ сгиба – по линии сгиба.

Создайте операцию. В результате получится объект, показанный на рис. 3.163. Отключите видимость эскиза, содержащего отрезок-ребро операции сгиба.

Рис. 3.163. Выполнение операции Сгиб по линии


9. В плоскости ZX сформируйте эскиз, содержащий окружность с центром, совпадающим с осью полученной цилиндрической поверхности сгиба и радиусом 51 мм (1 мм добавляется с учетом толщины листовой детали, чтобы полностью закрыть вырезы букв). Выдавите этот эскиз в прямом направлении на величину 100 мм. Обратите внимание: при выдавливании на вкладке Результат операции панели свойств необходимо нажать кнопку Новое тело! В результате вы получите в модели два пересекающихся тела: выдавленный цилиндр и согнутый лист с вырезом надписи.

10. Вызовите команду Булева операция. В качестве исходных тел по очереди укажите в окне модели цилиндр и листовое тело (не изменяйте порядок!). В группе кнопок Результат операции нажмите кнопку-переключатель Вычитание. Из тела цилиндра будет вычтено листовое тело (рис. 3.164).

Рис. 3.164. Результат выполнения булевой операции


11. Пока цилиндр имеет не совсем правильную форму, потому что его радиус 51 мм, а радиус внутренней поверхности согнутого листа был 50 мм. Чтобы выровнять радиус, постройте эскиз на верхней плоской грани полученного объекта. В эскизе необходимо создать две дуги радиусом 50 и 60 мм каждая, с начальным углом 90° и конечным углом 270°, а также два отрезка, соединяющих ближайшие концы дуг (рис. 3.165).

Рис. 3.165. Эскиз для выравнивания радиуса цилиндра


12. Выполните команду Вырезать выдавливанием в прямом направлении через всю модель. Можете сформировать скругления на верхней и нижней гранях объекта. Текст на цилиндрической поверхности создан (рис. 3.166).

Рис. 3.166. Текст на цилиндрической поверхности


Файл данной модели Текст на цилиндре.m3d находится на прилагаемом к книге компакт-диске в папке Examples\Глава 3.

Проставление трехмерных размеров и обозначений

Возможность проставления размеров и обозначений в трехмерной модели является новой для КОМПАС, поэтому мы обязательно должны уделить ей внимание. Рассмотрим процесс добавления различных размеров на типичном примере – трехмерной модели детали ведомого вала, которую мы ранее создали при разработке модели редуктора. При желании вы также можете загрузить эту модель из папки Examples\Глава 3\Редуктор цилиндрический прилагаемого к книге компакт-диска.

Команды для построения размеров и обозначений собраны на панели инструментов Элементы оформления (рис. 3.167), которая находится на компактной панели инструментов.

Рис. 3.167. Панель инструментов Элементы оформления


Начнем с того, что поставим диаметральные размеры всех участков вала.

1. Загрузите ранее созданную модель вала, сделайте активной панель Элементы оформления на компактной панели инструментов и вызовите команду Диаметральный размер


2. Щелкните на цилиндрическом участке выходной части вала. На панели свойств вы можете настроить текст размерной надписи, форму и размещение стрелок точно так же, как это делается при создании размеров на чертеже. Перейдите на вкладку Параметры, после чего в раскрывающемся списке Размещение текста выберите пункт Ручное. Теперь вручную отредактируйте размещение размерной надписи так, чтобы ее было видно (ее необходимо вытащить из тела вала). После этого достаточно щелкнуть на кнопке Создать объект (рис. 2.168). Обратите внимание, что после выполнения операции в дереве построения появился новый элемент, отвечающий только что созданному размеру.

Рис. 3.168. Проставление диаметрального размера на модели вала


3. Используя ту же команду и описанный порядок действий, создайте аналогичные размеры для остальных участков вала (рис. 3.169).

Рис. 3.169. Диаметральные размеры на валу


Совет

Вы можете создавать несколько размеров одного типа за один вызов соответствующей команды. Для завершения работы команды вы можете воспользоваться кнопкой Прервать команду или клавишей Esc.

4. Далее приступим к указанию длин каждой из ступеней вала. Для этого вызовите команду Линейный размер

Затем щелкните кнопкой мыши сначала на внешнем ребре фаски крайнего участка вала, а потом на ребре над выступом следующего участка. Таким образом вы зададите расстояние, для которого будет проставлен размер.

5. После этого необходимо указать плоскость для простановки размера. Проще всего это сделать в дереве построения. Если у вас такая же ориентация вала в пространстве, как и та, которая была изначально выбрана при выполнении модели вала, то это будет ортогональная плоскость XOY (рис. 3.170).

Рис. 3.170. Выбор плоскости для простановки линейного размера


6. При желании можете отредактировать состав размерной надписи, добавив в нее квалитет или допуски. Для завершения построения воспользуйтесь кнопкой Создать объект (рис. 3.171).

Рис. 3.171. Линейный размер на трехмерной модели вала


7. Самостоятельно постройте размеры для остальных участков. Как и в случае с диаметральным размером, для этого достаточно всего один раз вызвать команду Линейный размер, после чего лишь указывать размеры отдельных участков (рис. 3.172).

Рис. 3.172. Линейные 3D-размеры всех участков вала


Примечание

При работе в одном сеансе вызова команды построения трехмерного размера есть одно большое преимущество: отдельные параметры не приходится задавать дважды. Например, при построении ряда линейных размеров один раз заданная плоскость размещения размера будет автоматически устанавливаться для всех последующих размеров в этом сеансе работы с командой. При желании вы, конечно, сможете изменить плоскость.

Файл данной модели Вал ведомый (размеры).m3d находится на прилагаемом к книге компакт-диске в папке Examples\Глава 3.

Резюме