Перечисленные выше библиотеки и приложения – это далеко не все, с помощью чего система КОМПАС-3D облегчает жизнь инженеру. Есть еще много других утилит, которые входят в стандартную поставку или распространяются отдельно и предназначены для применения в различных сферах промышленности. Это, в частности, библиотеки трубопроводной арматуры, проектирования систем вентиляции, энергетического оборудования, контрольно-измерительных приборов и автоматики, архитектурных элементов, элементов электротехнических устройств, система проектирования металлоконструкций и пр.
Кроме того, «АСКОН» предлагает обширный комплект библиотек для КОМПАС, которые распространяются бесплатно и решают большой круг различных по структуре задач: от рисования осевых линий до моделирования сложнейших 3D-сборок. Это модули, созданные пользователями системы, которые разрабатывали их для своих нужд, а потом решили сделать свои творения достоянием общественности. Скачать эти библиотеки можно с сайта технической поддержки http://support.ascon.ru/download.php?act=cat&cat=3.
На сайте представлены различные библиотеки. Их можно условно разделить на две группы:
• библиотеки фрагментов (как параметризированных, так и нет), содержащие изображения разных приспособлений и техники;
• конструкторские библиотеки, как правило, небольшие по объему и выполняющие ограниченное количество операций с чертежами или моделями, но зачастую очень полезные.
Самыми интересными и полезными из бесплатных приложений, выложенных на сайте, являются библиотеки второй группы. Созданные простыми пользователями, они автоматизируют или расширяют стандартные инструменты графического редактора, удобно подстраивая их под потребности проектировщика. Один раз попробовав эти небольшие модули в работе, вам будет непросто отказаться от их использования. Рассмотрим некоторые из них.
Неплохие возможности предоставляет библиотека Текст на кривой, которая позволяет создавать текст в КОМПАС-График, используя в качестве направляющих любые кривые. Ее можно применять при оформлении архитектурных чертежей или при нанесении текстовых логотипов произвольной формы на стенку спроектированной детали.
Неоценимую помощь конструктору при работе с КОМПАС-График окажет Библиотека для вставки выносных элементов. Она очень проста в использовании и позволяет быстро создавать и размещать на листе часть чертежа, охваченную выносным элементом, с учетом выбранного масштаба. Схожая с ней по назначению Библиотека для вставки выносных элементов, ограниченных сплайнами позволяет проделать то же самое, но только для выносного элемента, ограниченного не стандартным кружком, а произвольной замкнутой кривой, созданной пользователем.
Не менее полезной может быть небольшая утилита Размер для справок, которая позволяет добавить символ * после размерных надписей для группы выделенных размеров, вследствие чего вам не придется редактировать каждый размер отдельно. Значительно сэкономить время при оформлении чертежей помогут утилиты Изменение высоты текста, с помощью которой можно за один раз изменить высоту шрифта для нескольких выделенных текстовых объектов, и Выравнивание, позволяющая выравнивать по вертикали и горизонтали позиционные выноски с заданием определенного интервала.
Библиотека Сплайн по таблице дает возможность строить в чертежах и фрагментах сплайн (ломаную, кривую Безье или NURBS-кривую) по данным из таблицы, загруженной из файла формата XLS или TXT. Иногда набрать такую таблицу в редакторе Excel и потом сразу получить требуемую кривую, загрузив файл, бывает удобнее, чем вводить координаты каждой точки при создании сплайна вручную.
Одной из самых полезных библиотек, доступных для неограниченного использования, является модуль Test Clos. Это совсем маленькая библиотека, которая ничего не рассчитывает и не строит, а просто находит в графических документах свободные концы объектов (отрезков, дуг, NURBS, кривых Безье, ломаных) и ставит в них точки. Что тут такого, спросите вы? Вот и я так подумал сначала, а сейчас использую эту библиотечку чаще других. Представьте себе ситуацию, когда вы чертите сложнейший агрегат на формате А1 с большим количеством не ассоциативных разрезов, сечений, выносок и пр. и при попытке в одном из разрезов создать штриховку система или вообще ее не создает, или штрихует площадь раз в двадцать большую, чем вам нужно. Конечно, если ничего уже не помогает, эту проблему можно решить, задав вручную границы области штриховки, потратив на это много времени. Рассмотрим еще одну ситуацию. При попытке создать деталь с помощью операции по сечениям (или кинематической операции), КОМПАС упрямо отказывается что-нибудь делать и все время выдает сообщение о том, что все контуры должны быть замкнуты. Или при вызове операции выдавливания для определенного эскиза на панели инструментов доступны (активны) только те элементы интерфейса, которые предназначаются для создания тонкой стенки. Можно привести очень много таких примеров. Причина данных проблем проста: контур, который заштриховывается, или эскиз, по которому формируется геометрия 3D-модели, разомкнут. Хорошо еще, если этот контур состоит из четырех-пяти, максимум десяти дуг или отрезков и вы, увеличивая масштаб до астрономического, сможете обнаружить точку разрыва. А если эскиз своей конфигурацией ни в чем не уступает какому-нибудь сборочному чертежу, как тогда найти концы разорванной кривой? Я думаю, нет необходимости продолжать объяснять, зачем нужна библиотека Test Clos.
Кроме описанных, на сайте вы можете найти еще большое количество разнобразных приложений для расчета состава сборки, центра масс, выполнения резьбовых отверстий, определения радиусов в моделях и т. п.
Примечание
Часть конструкторских библиотек с сайта технической поддержки создавались еще для более старых версий КОМПАС (некоторые даже для версии КОМПАС 5.11). Естественно, что при попытке подключить их в более поздних версиях система сообщит об ошибке – некорректной структуре файла библиотеки. К сожалению, в таком случае ничего не поделаешь, так как библиотеки не коммерческие и появление их обновлений для каждой новой версии системы зависит только от желания их создателей. Если такого желания у них нет, приходится довольствоваться тем, что есть.
Хочу остановиться подробнее на двух достаточно больших проектах, которые выложены на сайте «АСКОН» и которые написал я. Эти программы, кроме своего значительного практического значения (особенно для студентов), весьма органично вписываются в тему данной книги, поскольку они автоматизируют построение сборочного чертежа или трехмерной модели одноступенчатых редукторов различных типов.
Редуктор-2D V1.7
Проект Редуктор-2D (рис. 5.22) предназначен для проектного расчета приводов машин, состоящих из двигателя, муфты, передачи гибкой связью и одноступенчатого редуктора, и построения в КОМПАС-График чертежа общего вида редуктора, который входит в рассчитанный привод. Программа позволяет рассчитывать 35 различных схем приводов, которые представляют собой всевозможные комбинации передач гибкой связью (ременной, клиноременной или цепной) с одноступенчатым редуктором (цилиндрическим, коническим или червячным).
Рис. 5.22. Главное окно программы Редуктор-2D V1.7
Проект состоит из двух частей: расчетной – исполняемый файл REDUCTOR.exe и графической, выполненной в виде подключаемой библиотеки к системе КОМПАС, – файл REDUCTOR.rtw.
Примечание
Дистрибутив этого проекта находится на прилагаемом к книге компакт-диске в папке Programs\Редуктор 2D V1.7 (rus). После подключения библиотеки REDUCTOR.rtw к КОМПАС вы можете свободно использовать этот проект в своих целях.
В расчетной части выполняется кинематический и силовой расчет всего привода, проектный расчет выбранной передачи гибкой связью, проектный расчет передачи зацеплением (редуктора), расчет валов и подбор подшипников. Для этого нужно запустить файл REDUCTOR.exe. Сам расчет практически полностью автоматизирован, проектировщик при необходимости может лишь подкорректировать некоторые параметры. Детальное описание, как работать с этой частью проекта, приведено в небольших справках, которые доступны в каждом расчетном разделе. Каждый раздел расчета представлен вкладкой (рис. 5.23): первая вкладка – это кинематический и силовой расчет привода, последняя – расчет валов и подшипников, промежуточные две – расчет механических передач, входящих в привод. Результирующие данные расчетов каждой предыдущей вкладки являются исходными данными для расчетов следующей, из чего следует, что вкладки отображают схему привода.
Рис. 5.23. Вкладка, на которой производится расчет цилиндрической зубчатой передачи
После завершения проектного расчета привода можно переходить к графической части проекта (обязательным условием завершения считается выполнение расчета валов, то есть вам необходимо заполнить все вкладки расчетной части). Для этого сначала следует подключить библиотеку REDUCTOR.rtw к КОМПАС. В окне менеджера библиотек выполните команду контекстного меню Добавить описание → прикладной библиотеки, в открывшемся окне выберите файл библиотеки (REDUCTOR.rtw). В появившемся диалоге Свойства библиотеки вы можете задать имя, которое будет отображено в окне менеджера библиотек, а также выбрать режим открытия (запуска) библиотеки. После подключения библиотека появится в окне менеджера и будет готова к работе.
Примечание
Для данной прикладной библиотеки размещение самого файла REDUCTOR.rtw не имеет значения.
После запуска библиотеки, если окно расчетной части проекта (REDUCTOR.exe) не было закрыто, в окно графической библиотеки будет автоматически загружен редуктор, который был только что спроектирован в расчетной части (рис. 5.24). В противном случае вам придется или заново произвести расчет всего привода, или загрузить данные о рассчитанном приводе, если они, конечно, были сохранены из расчетной части.
Рис. 5.24. Окно графической части проекта Редуктор-2D V1.7
Все, что остается для построения чертежа редуктора, входящего в привод, – нажать кнопку Чертить лист. Программа самостоятельно создаст лист формата А1 и разместит на нем три проекционных вида редуктора со всеми необходимыми сечениями и размерами.
Пример чертежа редуктора, построенного с помощью этой библиотеки, изображен на рис. 5.25. Кроме цилиндрического косозубого редуктора, в привод входит ременная передача. Привод рассчитывался для следующих исходных данных: вращающий момент выходного вала – 1200 Н · м, угловая скорость – 12 с-1, режим работы – средний.
Рис. 5.25. Чертеж цилиндрического редуктора, сгенерированный прикладной библиотекой Редуктор-2D V1.7
Чертежи редукторов двух других типов приведены ниже. Конический редуктор (рис. 5.26) составляет привод вместе с клиноременной передачей и был рассчитан для следующих параметров: вращающий момент – 700 Н · м, угловая скорость – 15 с-1, режим работы – средний.
Рис. 5.26. Редуктор конический одноступенчатый
Червячный редуктор, также созданный при помощи этой библиотеки (рис. 5.27), рассчитывался в приводе совместно с цепной передачей для таких параметров: вращающий момент – 2000 Н · м, угловая скорость – 3 с-1, режим работы – тяжелый.
Рис. 5.27. Редуктор червячный одноступенчатый
Файлы этих чертежей находятся на прилагаемом к книге компакт-диске в папке Examples\Глава 5\Редуктор (примеры)\2D.
На создание каждого чертежа затрачивалось не более 1–2 секунд! С учетом того, что некоторое время тратится на проведение проектных расчетов, можно с уверенностью утверждать, что с помощью библиотеки Редуктор-2D V1.7 проектирование привода и построение сборочного чертежа не занимает более 5 минут. Вы можете убедиться в этом сами, попробовав проект в действии.
Редуктор-3D V2.3
Программа Редуктор-3D также является подключаемым модулем к системе КОМПАС-3D. Приложение Редуктор-3D V2.3 используется для проектного расчета и построения трехмерной модели одноступенчатых редукторов общего назначения трех видов: конического, цилиндрического или червячного.
Примечание
Дистрибутив этой библиотеки находится на прилагаемом к книге компакт-диске в папке Programs\Редуктор-3D V2.3 (rus). Для установки модуля необходимо запустить файл инсталляции install.exe. После установки библиотеки подключите сам файл библиотеки к КОМПАС так, как было описано выше.
После запуска библиотеки появится главное окно программы (рис. 5.28), в левой части которого находится панель выбора типа проектируемого изделия (текущий отображается в цвете, два другие – черно-белые), а в правой – область для ввода исходных данных и области результатов расчета.
Рис. 5.28. Главное окно библиотеки Редуктор-3D V2.3
Исходные данные включают в себя всего четыре параметра (вводятся в области Исходные данные):
• вращающий момент на ведомом валу редуктора;
• угловая скорость ведомого вала;
• передаточное число редуктора;
• режим работы редуктора.
Далее для каждого возможного типа одноступенчатых редукторов вы можете установить (выбрать) некоторые специфические параметры по своему усмотрению (КПД передачи, количество зубьев шестерни, материалы зубчатой или червячной пары и т. п.).
В качестве примера попробуем создать с помощью этой библиотеки цилиндрический редуктор по исходным данным, которые мы использовали при разработке чертежа редуктора в гл. 2 и его трехмерной модели в гл. 3:
• вращающий момент на выходном валу редуктора – 1200 Н · м;
• необходимая частота вращения вала – 15 рад/с;
• режим загруженности агрегата – средний;
• передаточное число редуктора U (выбирается из раскрывающегося списка в области Исходные данные) – 3, 55;
• коэффициент полезного действия цилиндрического косозубого зацепления – 0,97;
• коэффициент ширины зубчатого венца ?ba – 0,6;
• количество зубьев шестерни zш – 20 шт.;
• угол наклона линии зуба ? – 15°;
• материал шестерни – сталь 40, нормализация;
• материал колеса – сталь 50, нормализация.
Тип зацепления (косозубое) устанавливается нажатием соответствующей кнопки в группе кнопок-переключателей Тип зацепления. Значения КПД зацепления, коэффициента ширины зубчатого венца, угла наклона линии зуба задаются путем перетаскивания соответствующих каждому параметру ползунков в области Расчет параметров зубчатого зацепления. Пределы прокрутки ползунков (то есть их диапазон) отвечают граничным или рекомендуемым значениям того или иного параметра. Таким образом, пользователь защищен от ошибок при расчете, обусловленных неверно введенным значением.
Фактически, после задания передаточного числа редуктора программа уже произвела расчет механизма. При изменении какого-либо параметра (с помощью ползунков или раскрывающихся списков) библиотека тут же пересчитает все остальные параметры редуктора. Валы и подшипники рассчитываются и подбираются автоматически.
Задав исходные данные и отредактировав характерные параметры для данного типа редукторов, можно приступать к построению (кнопка Начать построение). После начала построения на экране появится мастер Параметры построения и сборки (рис. 5.29). На вкладках данного окна необходимо указать директорию для сохранения файлов сборки редуктора, определить, нужно ли создавать текстовый файл с информацией о спроектированном редукторе, а также задать параметры сборки (состав сборки: полная или нет, с разрезами, ортогональными плоскостями или вырезами).
Рис. 5.29. Окно мастера Параметры построения и сборки, в котором можно задавать состав, разрезы или сечения
Завершающим этапом работы мастера является построение трехмерной модели рассчитанного редуктора: сначала одна за другой строятся модели всех деталей редуктора, потом они собираются в сборку.
Все построение в зависимости от мощности компьютера, сложности редуктора (тип, количество зубьев на колесе и т. п.) занимает от 2 до 4 минут. Сколько бы вы потратили на формирование такой сборки вручную (рис. 5.30), даже имея достаточный опыт работы в КОМПАС? Наверное, не меньше двух дней. Это еще не учитывая проектного и проверочного расчетов, которые программа выполняет за считанные секунды.
Рис. 5.30. Трехмерная модель одноступенчатого редуктора, созданная с помощью библиотеки Редуктор-3D V2.3
Сравните модель, сгенерированную библиотекой Редуктор-3D, и созданную нами в гл. 3 и убедитесь, что существенных различий нет. Файл сборки и всех деталей редуктора, созданного прикладной библиотекой, размещены в папке Examples\Глава 5\Редуктор (примеры)\3D\1 прилагаемого к книге компакт-диска.
В заключение приведу примеры сборок еще двух редукторов, смоделированные с помощью этой библиотеки.
• Редуктор конический (рис. 5.31). Спроектирован для исходных данных:
· вращающий момент на выходном валу – 800 Н · м;
· частота вращения выходного вала – 25 рад/с;
· режим загруженности – средний;
· передаточное число редуктора – 2,8;
· коэффициент передачи – 0,96;
· количество зубьев шестерни – 24 шт.;
· материал шестерни – сталь 40, нормализация;
· материал колеса – сталь 45, нормализация;
· полная сборка, разрез №1.
Рис. 5.31. Редуктор конический одноступенчатый
• Редуктор червячный (рис. 5.32). Спроектирован для таких исходных данных:
· вращающий момент на выходном валу – 2000 Н · м;
· частота вращения выходного вала – 2,5 рад/с;
· режим загруженности – тяжелый;
· передаточное число редуктора – 20;
· размещение червяка – верхнее;
· коэффициент передачи – 0,82;
· количество заходов червяка – 2;
· степень точности передачи – 8;
· коэффициент диаметра червяка – 8;
· материал венца червячного колеса – БрО10Ф1;
· полная сборка, разрез №1.
Рис. 5.32. Редуктор червячный одноступенчатый
Файлы обоих редукторов вы можете загрузить с прилагаемого к книге компакт-диска. Они находятся в папке Examples\Глава 5\Редуктор (примеры)\3D.
С помощью библиотеки Редуктор-3D и Библиотеки муфт можно очень легко создавать сборки различных приводов, состоящих из одноступенчатого редуктора и муфт на его валах (рис. 5.33).
Рис. 5.33. Машиностроительный привод, состоящий из цилиндрического редуктора, упругой втулочно-пальцевой муфты и муфты с торообразной резиновой оболочкой
Модель редуктора с муфтами, показанная на рис. 5.33, находится в папке Examples\Глава 5\-REDUCER прилагаемого к книге компакт-диска.
При создании такой модели намного больше времени ушло на наложение сопряжений между муфтами и соответствующими им валами, чем на само построение механизмов с помощью прикладных библиотек. В целом выполнение сборки такого привода не превысило 5 минут. Подумайте, сколько бы вы потратили времени, рассчитывая и моделируя редуктор, отыскивая в ГОСТ размеры нужных муфт и создавая по отдельности каждую деталь. В КОМПАС-3D вы избавлены от этой рутинной работы.