Однако даже после должного учета темной материи было трудно понять, превышает ли плотность вещества в космосе ту критическую отметку, которая отличает сжимающуюся Вселенную от вечно расширяющейся. Определение содержимого Вселенной было лишь частью проблемы; другая ее часть заключалась в выяснении скорости расширения пространства или динамики этого процесса на протяжении существования космоса. Решить эту задачу оказалось очень непросто.
Чтобы относительно точно измерить скорость космического расширения, происходящего на протяжении значительного периода истории Вселенной, необходимо исследовать огромное количество галактик, выяснив их скорость и фактическое расстояние до них. Астрономы вычислили локальную скорость расширения с помощью закона Хаббла – Леметра еще в 1929 году (хотя точное значение коэффициента пропорциональности обсуждалось на протяжении десятилетий и до сих пор остается предметом спора). Однако для того чтобы ответить на вопрос о возможном Большом сжатии, нам нужно выяснить скорость расширения Вселенной в разные эпохи, а значит, нам придется иметь дело с огромными расстояниями. Вычислить скорость галактики нетрудно, – для этого достаточно измерить красное смещение. Но точное измерение расстояния в миллиарды световых лет представляет собой гораздо более сложную задачу.
В конце 1960-х годов астрономы пытались высчитать расстояния и скорости галактик по фотопластинкам с изображениями и, несмотря на довольно большую неопределенность, заявили о том, что наша Вселенная обречена на сжатие. Это побудило нескольких астрономов написать ряд весьма интересных статей о том, как может развиваться данный процесс. То было очень интересное время.
В конце 1990-х годов астрономы разработали более точный метод измерения скорости расширения Вселенной, объединив несколько способов вычисления космического расстояния и применив их к чрезвычайно удаленным взрывающимся звездам. Наконец, они смогли провести точные измерения и раз и навсегда определить судьбу Вселенной. То, что они обнаружили, шокировало практически всех, принесло троим ученым Нобелевскую премию и полностью подорвало наше понимание основ физики.
Выяснение того факта, что нам почти наверняка не грозит гибель в огне во время Большого сжатия, оказалось слабым утешением[35]. Альтернативой сжатию является вечное расширение, которое подобно бессмертию, только на первый взгляд кажется чем-то хорошим. С одной стороны, мы не обречены на гибель в космическом аду. С другой – наиболее вероятная судьба нашей Вселенной по-своему гораздо более удручающа.
Глава 4. Тепловая смерть
ВАЛЕНТАЙН: Теплота смешалась с… миром.
(Он обводит рукой комнату – воздух, космос, Вселенную.)
ТОМАСИНА: Так мы будем танцевать? Надо спешить!
Одно из моих самых ранних воспоминаний, связанных с астрономией, – это статья из журнала Discover 1995 года, в которой говорилось о «кризисе в космосе». В данных обнаружилось нечто невообразимое, – судя по ним, Вселенная была моложе существующих в ней звезд.
Все тщательные расчеты, основанные на экстраполяции текущего расширения вплоть до Большого взрыва, говорили о том, что возраст Вселенной составляет от 10 до 12 миллиардов лет, тогда как возраст самых старых звезд в соседних древних скоплениях, согласно результатам вычислений, составляет около 15 миллиардов лет. Разумеется, оценка возраста звезд не всегда позволяет получить точный результат, поэтому есть вероятность, что после сбора дополнительных данных звезды окажутся на один или два миллиарда лет моложе, чем выглядят. Однако увеличение возраста Вселенной с целью решения этой проблемы породило бы еще большую путаницу. Чтобы сделать Вселенную старше, потребовалось бы отказаться от теории космической инфляции – одного из важнейших прорывов в исследовании ранней Вселенной со времен открытия самого Большого взрыва.
Астрономам потребовалось три года, чтобы проанализировать данные, пересмотреть теории и разработать совершенно новые способы измерения, прежде чем им удалось найти решение, не «разрушающее» раннюю Вселенную. Правда, оно разрушило все остальное. Полученный ответ породил новый вид физики, вплетенный в саму ткань космоса, который полностью изменил наш взгляд на Вселенную и заставил пересмотреть ее будущее.
Создание карты грозного неба
Ученые, которые в конце 1990-х решили проблему возраста Вселенной, не стремились революционизировать физику. Они всего лишь пытались ответить на, казалось бы, простой вопрос: насколько быстро замедляется процесс расширения Вселенной? На тот момент было общеизвестно, что расширение космоса инициировано Большим взрывом, и с тех пор оно замедляется под воздействием гравитации всех содержащихся во Вселенной объектов. Измерение так называемого параметра замедления должно было помочь выяснить соотношение между направленным вовне импульсом от Большого взрыва и направленной внутрь силой тяготения всех компонентов Вселенной. Чем выше параметр замедления, тем сильнее гравитация тормозит космическое расширение. Высокое значение говорит о том, что Вселенная обречена на Большое сжатие, а низкое – о том, что, несмотря на замедление, процесс расширения никогда полностью не прекратится.
Чтобы измерить параметр замедления, необходимо как-то выяснить скорость расширения Вселенной в прошлом и сравнить с тем, как быстро она расширяется сейчас. К счастью, эта задача вполне решаема благодаря тому, что мы можем непосредственно видеть прошлое, глядя на отдаленные объекты, а также наблюдать за объектами, которые удаляются от нас прямо сейчас. Все, что нам нужно сделать, – это посмотреть на то, что находится рядом, и на то, что расположено очень далеко, определить скорость удаления этих объектов от нас, и произвести небольшие расчеты. Все просто!
На практике, правда, все совсем не просто, поскольку помимо красного смещения необходимо выяснить еще и расстояния до объектов глубокого космоса, измерить которые очень трудно. Однако достаточно знать о том, что это в принципе возможно. К счастью, астрономы обладают обширным и разнообразным инструментарием для проведения подобных измерений, и в данном случае им на помощь приходят катастрофические термоядерные взрывы далеких звезд.
Дело в том, что свойства взрывов некоторых типов сверхновых настолько предсказуемы, что их можно использовать в качестве стандартных измерителей для определения расстояния. Речь идет о гибели белых карликов, до взрыва представляющих собой медленно остывающие звездные остатки, в которые превратится и наше Солнце после того, как преодолеет стадию красного гиганта, уничтожив ближайшие планеты. Когда масса белого карлика достигает критической отметки (за счет поглощения вещества звезды-компаньона или слияния с другим белым карликом)[36], он взрывается. Этот взрыв называется вспышкой сверхновой типа Ia и имеет характерную кривую блеска и спектр, по которым мы можем довольно уверенно отличить его от других светящихся космических объектов. В принципе, хорошо понимая физику подобного взрыва, мы знаем, насколько ярким он должен выглядеть вблизи, и, учитывая то, каким ярким он нам кажется, мы можем выяснить расстояние, преодоленное светом. (Мы называем такой взрыв «стандартной свечой», поскольку он представляет собой своеобразную лампочку, мощность которой нам точно известна. На основании этой информации мы можем определить, где находится данная лампочка, учитывая то, что ее яркость обратно пропорциональна квадрату расстояния. Только мы говорим «свеча», а не «лампочка», поскольку это звучит более поэтично.)
После выяснения расстояния до сверхновой необходимо определить скорость ее удаления. Для этого можно использовать красное смещение в спектре галактики, в которой взорвалась звезда, говорящее о том, насколько быстро в этой точке происходит космическое расширение. Используйте полученное расстояние и скорость света, чтобы выяснить, как давно все это произошло, и вы получите значение скорости расширения в прошлом.
В 1998 году, всего через несколько лет после публикации в журнале Discover статьи о возрасте космоса, две независимые исследовательские группы, наблюдавшие за далекими сверхновыми, пришли к одинаковому и совершенно невероятному выводу о том, что параметр замедления процесса расширения Вселенной является отрицательным. Из этого следует, что процесс расширения не замедляется, а ускоряется.
Геометрия космоса
Если бы космос вел себя хорошо, описать базовую физику расширения Вселенной было бы так же легко, как и процесс подбрасывания мяча, рассмотренный в предыдущей главе. Если бросить мяч слишком медленно, он поднимется в воздух, остановится и упадет. Этот вариант соответствует Вселенной, которая содержит достаточное количество вещества (или отличается относительно слабым начальным импульсом Большого взрыва) для того, чтобы гравитация победила и обеспечила сжатие пространства. Если бросить мяч нечеловечески быстро, он может преодолеть силу земного притяжения и отправиться в бесконечное путешествие по космосу с постоянно замедляющейся скоростью. Этот вариант соответствует Вселенной, в которой наблюдается идеальный баланс между расширением и гравитацией. Если бросить мяч еще быстрее, его скорость будет приближаться к некой постоянной величине по мере уменьшения влияния земного притяжения. Этот вариант соответствует Вселенной, которая расширяется вечно, поскольку количество содержащегося в ней вещества недостаточно для того, чтобы повернуть процесс расширения вспять и даже просто его замедлить.
Каждый из этих возможных типов Вселенных имеет название и определенную геометрию. Речь в данном случае идет не о внешней форме Вселенной, вроде сферы, куба или чего-то еще, а о свойстве, определяющем поведение гигантских лазерных лучей в космическом пространстве. Вселенную, обреченную на Большое сжатие, называют «замкнутой», поскольку в ней два параллельных луча лазерной пушки в итоге сойдутся, подобно линиям долготы на глобусе. Дело в том, что замкнутая Вселенная содержит в себе так много материи, что все пространство искривлено внутрь. Идеально сбалансированная Вселенная является «плоской», потому что в ней лучи всегда будут оставаться параллельными, подобно параллельным линиям на плоском листе бумаги. Вселенная, в которой расширение преобладает над гравитацией, называется «открытой», и в ней, как вы, вероятно, уже догадались, два лазерных луча со временем будут расходиться. Двумерным аналогом в данном случае является поверхность седла: попробуйте нарисовать параллельные линии на седле (если седла под рукой нет, можете использовать чипсы Pringles), и вы увидите, что они расходятся. Эти формы определяют «крупномасштабную кривизну» Вселенной – степень искривления всего пространства, обусловленного содержащейся в нем материей и энергией.