Некоторые ученые просто ради интереса размышляют о возможных способах создания таких маленьких черных дыр. Идея эта не нова. Помимо того, что они «ужасно милые» в теоретическом смысле, эти миниатюрные монстры могут многое рассказать нам о действии гравитации, об их возможном испарении и даже о существовании дополнительных невидимых нам измерений пространства.
На протяжении многих лет физики изучали данные с ускорителей частиц, надеясь обнаружить признак того, что в результате одного из столкновений протонов в небольшом пространстве образовалось достаточно энергии для возникновения микроскопической черной дыры. Такая черная дыра, если и образуется, должна быть безвредной по традиционным представлениям, не учитывающим возможность распада вакуума. Согласно теории, она должна немедленно испариться под действием излучения Хокинга, и даже если этого не произойдет, она, скорее всего, унесется от нас с релятивистской скоростью, поскольку нацеливание нельзя выполнить настолько точно, чтобы после столкновения частицы полностью остановились. Кроме того, чтобы столкновения в коллайдерах могли породить крошечные черные дыры, гравитация, действующая на субатомные частицы, должна оказаться сильнее, чем предполагают эйнштейновские законы гравитации. И, насколько нам известно, такое может случиться лишь при наличии дополнительных измерений пространства. Мы поговорим о них подробнее в следующей главе, а пока достаточно сказать, что существование более трех пространственных измерений может усилить гравитацию в очень малых масштабах, сделав возможным формирование маленьких черных дыр в результате столкновений в ускорителе БАК.
Таким образом, если нам удастся создать черную дыру с помощью БАК, мы получим доказательство того, что пространство имеет больше измерений, чем мы думали. Для ученого, стремящегося открыть новые захватывающие области физики, подобные новости кажутся фантастическими! Но, разумеется, было бы очень жаль, если бы крошечные черные дыры, которые мы пытаемся создать в ускорителе, могли вызвать распад вакуума и гибель Вселенной.
К счастью, они на такое не способны. Мы уверены в этом настолько, насколько это вообще возможно для физиков. Во-первых, как мы уже говорили, энергия столкновения космических лучей намного превосходит все то, что мы наблюдаем в своих ускорителях частиц. Если даже мы можем сталкивать протоны для создания черных дыр, то Вселенная делала это бесчисленное количество раз, и, как видите, мы все еще здесь! Так что либо черные дыры нигде не возникают, либо они совершенно безвредны.
Другая причина заключается в вероятном существовании порога значения массы, который должны преодолеть эти крошечные черные дыры, прежде чем они начнут представлять опасность хотя бы гипотетически. Масса черных дыр, созданных коллайдером, была бы гораздо ниже этого уровня. И скорее всего, то же самое можно сказать о результатах большинства столкновений, происходящих в космосе. Чтобы доказать ограниченность размеров гипотетических дополнительных пространственных измерений, некоторые из нас уже приводили этот довод и указывали на то, что мы все еще живы[68]. (Как космологу, заинтересованному в тестировании различных физических теорий, мне нравится приводить в качестве одного из доводов отсутствие признаков космического апокалипсиса.)
Итак, если отвлечься от маленьких черных дыр, что можно сказать о распаде вакуума? Все остальные варианты гибели Вселенной, рассмотренные ранее, по крайней мере, предполагают такую отдаленность во времени, что все опасения по их поводу можно смело оставить постчеловеческим сущностям, которые будут населять космос после нас. Особенность распада вакуума заключается в том, что он может произойти в любой момент, даже если вероятность этого чрезвычайно мала. Кроме того, он предполагает тотальное разрушение Вселенной.
В 1980 году два теоретика, Сидни Коулман и Фрэнк Де Луччиа, рассчитали, что пузырь истинного вакуума будет содержать не только элементарные частицы с совершенно иными (и смертоносными) свойствами, но и пространство, которое по своей природе гравитационно нестабильно. По их словам, после образования пузыря все его содержимое коллапсирует в течение нескольких микросекунд. Вот что они написали:
Это удручает. Вероятность того, что мы существуем в ложном вакууме, никогда не была особенно обнадеживающей. Распад вакуума представляет собой окончательную экологическую катастрофу; в новом вакууме будут действовать другие физические константы; после распада вакуума невозможной станет не только жизнь, какой мы ее знаем, но и привычная нам химия. Тем не менее всегда можно было утешиться мыслью о том, что со временем в новом вакууме может возникнуть если и не жизнь, какой мы ее знаем, то, по крайней мере, некие структуры, способные радоваться своему существованию. Теперь и эта возможность исключена[69].
Радость неведения
Распад вакуума – это относительно новая идея, которая опирается на множество экстремальных видов физики, так что за следующие несколько лет наш взгляд на нее, скорее всего, резко изменится. Возможно, благодаря более подробным и строгим вычислениям мы получим другие результаты. Все эти вопросы очень сложны, и до достижения консенсуса нам еще далеко.
Если мы признаем, что наш вакуум действительно является метастабильным, этот вывод может оказаться несовместимым с теорией космической инфляции. По нашим оценкам, квантовых флуктуаций на стадии инфляции и высокой температуры после нее должно было оказаться достаточно, чтобы спровоцировать распад вакуума в первые моменты существования космоса, что свело бы на нет наши шансы на существование. Очевидно, такого не произошло. Это говорит о том, что либо мы не понимаем устройство ранней Вселенной, либо распад вакуума в прошлом был невозможен.
Как бы вы ни относились к теориям о ранней Вселенной, серьезное рассмотрение возможности распада вакуума зависит от того, насколько вы доверяете Стандартной модели физики элементарных частиц, которая, как мы знаем, не является исчерпывающей. Темная материя, темная энергия и несовместимость квантовой механики и общей теории относительности указывают на то, что во Вселенной есть еще что-то, чего мы не знаем. То, что придет на смену Стандартной модели, вполне может избавить нас от необходимости переживать по поводу квантового пузыря смерти.
А может быть и так, что дальнейшие разработки в области фундаментальной физики расскажут нам о совершенно новых вариантах гибели Вселенной. Возможность существования дополнительных пространственных измерений, которые не дают покоя физикам, надеющимся создать миниатюрные черные дыры с помощью ускорителей частиц, обогащает Вселенную новыми неизведанными областями. Подобно исследователю, достигшему края карты, мы протягиваем руку, не зная, что нам предстоит найти. Дополнительные пространственные измерения могут помочь нам разрешить некоторые проблемы в теориях гравитации, однако на полях постоянно расширяющейся космической карты мы наверняка обнаружим предупреждение: «здесь водятся монстры».
Глава 7. Большой отскок
ГАМЛЕТ: О боже! Заключите меня в скорлупу ореха, и я буду мнить себя повелителем бесконечности, только избавьте меня от дурных снов.
14 сентября 2015 года, в 9 часов 50 минут и 45 секунд утра по Гринвичу вы на миг стали чуточку выше.
Гребень гравитационной волны, которая вас омыла, путешествовал по космосу, искривляя само пространство, на протяжении 1,3 миллиарда лет, – с момента слияния двух черных дыр, масса каждой из которых в 30 раз превышала массу Солнца. Хотя вы, скорее всего, ничего не заметили. В конце концов, ваш рост увеличился менее чем на миллионную ширины протона, однако от внимания физиков из лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO) это не укрылось. Первое обнаружение гравитационных волн стало кульминацией многолетних поисков, потребовавших разработки новых технологий и создания самого чувствительного оборудования в истории экспериментальной физики. Выявление этой ряби на ткани пространства-времени послужило окончательным подтверждением общей теории относительности Эйнштейна.
Еще более важно, что это открытие ознаменовало начало новой эры астрономических наблюдений. Оно позволило взглянуть на Вселенную совершенно по-другому. Теперь вместо сбора света или высокоэнергетических частиц, испущенных удаленными объектами, мы могли почувствовать вибрацию самого пространства и впервые получить представление об отдаленных космических катастрофах, способных сотрясти самые основы реальности.
С момента этого первого открытия гравитационно-волновая астрономия продолжала поставлять нам сведения о катастрофических слияниях черных дыр и нейтронных звезд, а также позволяла нам с беспрецедентной точностью изучать работу гравитации. Однако гравитационные волны способны подсказать ответы и на более фундаментальные вопросы. Они могут не только дать нам новое представление о форме и происхождении нашей Вселенной, но и намекнуть на то, что может находиться за ее пределами, – на то, что может в итоге ее уничтожить.
Невыносимая слабость гравитации
Мы давно знаем, что с гравитацией что-то не так. Она работает слишком хорошо.
До сих пор общая теория относительности Эйнштейна с блеском выдерживала все испытания. На протяжении десятилетий физики пытались отыскать какое-нибудь отклонение, из-за которого простые[70] уравнения теории Эйнштейна могут перестать работать. В каких-нибудь экстремальных условиях, например на краю черной дыры или в центре нейтронной звезды, эти уравнения должны дать сбой. До сих пор мы ничего не находили, но мы уверены, что ищем не напрасно.
Для этого у нас есть веские основания. По сравнению с другими силами гравитация кажется весьма странной. Она выглядит совершенно иначе с математической точки зрения, и она слишком слабая. Разумеется, когда речь идет о массе, достаточной для формирования галактики или черной дыры, гравитация кажется довольно сильной. Но в повседневной жизни она представляет собой самую слабую из всех сил, с которыми вы имеете дело. Каждый раз, когда вы поднимаете кофейную чашку, вы преодолеваете гравитационное притяжение целой планеты. Для того чтобы гравитация начала хотя бы конкурировать с ядерными силами, удерживающими атомы вместе, необходимо сжать массу Солнца до размера города.