И те другие существа, как и мы, могут прийти к тому же самому заключению: Вселенная не является статичной, она когда-то возникла и неизбежно должна однажды исчезнуть.
Глава 3. Большое сжатие
Предлагаю начать с конца света. Покончим с ним и перейдем к более интересному.
В темную безлунную осеннюю ночь, находясь в Северном полушарии, посмотрите вверх и найдите на небе созвездие Кассиопея в виде буквы W. Вглядитесь в пространство под ним, и, если небо будет достаточно темным, вы увидите тусклое размытое пятно, ширина которого примерно соответствует диаметру полной луны. Это галактика Андромеды, огромный спиральный диск с триллионом звезд и сверхмассивной черной дырой в центре, который несется нам навстречу со скоростью 110 километров в секунду.
Примерно через четыре миллиарда лет галактика Андромеды и наша галактика Млечный Путь столкнутся, устроив потрясающее световое шоу. Звезды будут сходить со своих орбит, образуя звездные потоки, простирающиеся сквозь космос изящными дугами. Внезапное столкновение галактического водорода приведет к рождению новых звезд. Газ воспламенится вокруг спящих в центре галактик сверхмассивных черных дыр, которые начнут постепенно сближаться друг с другом, пока не сольются воедино. Струи интенсивного излучения и частиц высоких энергий будут пронзать хаотический клубок газа и звезд, а в центральной области новой галактики «Млечномеда» образуется испускающий рентгеновское излучение водоворот обреченной материи, падающей в новую, еще более массивную черную дыру.
Даже в самый разгар этой галактической катастрофы лобовые столкновения между звездами маловероятны из-за огромных расстояний между ними. Солнечная система в целом, скорее всего, выживет. Чего нельзя сказать о Земле. К тому моменту Солнце уже перейдет в стадию красного гиганта, в результате чего температура Земли увеличится настолько, что океаны полностью испарятся, и жизнь на ее поверхности станет невозможной. Однако, если человечеству удастся найти пристанище в другой части Солнечной системы, то на протяжении нескольких миллиардов лет люди смогут любоваться впечатляющим зрелищем, наблюдая за процессом объединения двух огромных спиральных галактик. Когда струи частиц иссякнут и отбушуют взрывы сверхновых, получившаяся в результате объединения галактик масса будет представлять собой гигантское эллипсоидное скопление старых и умирающих звезд.
Каким бы катастрофическим ни казалось слияние галактик его непосредственным участникам, оно представляет собой вполне обычное космическое явление и довольно завораживающее, если наблюдать его с огромного расстояния. Большие галактики разрывают на части и поглощают более мелкие; соседние звездные системы сливаются друг с другом. Существуют свидетельства того, что наш Млечный Путь поглотил десятки своих более мелких соседей, – мы до сих пор можем видеть гигантские звездные хвосты, закручивающиеся вокруг диска нашей галактики, словно обломки, оставшиеся после межзвездной автомобильной катастрофы.
Однако в масштабе Вселенной подобные столкновения становятся все более редким явлением. Вселенная расширяется, – пространство, то есть расстояние между объектами, а не сами объекты, увеличивается. Это означает, что отдельные галактики и группы галактик в среднем все сильнее удаляются друг от друга. Внутри самой группы и скопления слияния по-прежнему могут иметь место. В непосредственной близости от нас находятся звездные системы, объединенные в группу с невыразительным названием «Местная группа галактик», представляющую собой разношерстную компанию небольших и неправильных галактик, на фоне которых выделяются две гигантские спирали, и всем им рано или поздно суждено слиться воедино. Однако объекты, находящиеся на больших расстояниях, порядка нескольких десятков миллионов световых лет, судя по всему, удаляются от нас.
В долгосрочной перспективе главный вопрос следующий: будет ли это расширение продолжаться бесконечно или оно когда-то закончится и обратится вспять? Откуда мы вообще знаем, что расширение имеет место?
Когда вы находитесь во Вселенной, которая расширяется равномерно во всех направлениях, вы наблюдаете не расширение как таковое, а скорее удаление всех объектов от вас. С Земли видно, как далекие галактики разбегаются от нас, будто мы их каким-то образом отталкиваем. Однако если бы мы внезапно оказались в галактике за миллиард световых лет отсюда, мы и там увидели бы, как Млечный Путь и все остальные объекты, находящиеся за пределами некоторой области, удаляются от нас. Этот феномен является несколько контринтуитивным следствием равномерного и повсеместного расширения пространства.
Таким образом, каждая точка во Вселенной – это центр мощного равномерного отталкивания. Технически Вселенная не имеет центра. Однако каждый из нас является центром собственной наблюдаемой Вселенной[27]. И с нашей точки зрения, все галактики, находящиеся за пределами нашей группы, удаляются от нас с максимально возможной скоростью. Но дело не в нас; дело в космологии.
Обнаружить космическое расширение было не так легко, как может показаться. Несмотря на то что галактики начали наблюдать в телескопы уже в 1700-х годах, из-за их огромной удаленности и чудовищно медленного (по человеческим меркам) движения людям потребовалось более двух веков для того, чтобы выяснить, как они движутся относительно нас и являются ли они вообще галактиками. Даже самые мощные современные телескопы не позволяют наблюдать их движение напрямую – галактики не кажутся удаляющимися от нас, когда мы на них смотрим. Однако мы можем обнаружить это, проанализировав такое, на первый взгляд, не имеющее отношения к делу свойство галактик, как цвет их свечения.
Если вы когда-либо замечали, как меняется звук проезжающей мимо гоночной машины или обращали внимание на изменение тона сирены при ее приближении и удалении, то вы уже знакомы с эффектом Доплера. Доплеровское смещение – это явление, при котором звук становится более высоким по мере приближения издающего его объекта и более низким по мере его удаления. Это связано с изменением частоты воспринимаемого звука вследствие сокращения и увеличения длины звуковой волны. В конце концов, частота зависит от скорости, с которой волны достигают вас. В случае со звуком это волны давления, и более высокая частота характеризуется более высоким звуком.
Оказывается, нечто подобное происходит и со светом. Свету быстро приближающегося к нам источника свойственна более высокая частота, а быстро удаляющегося – более низкая. В случае со световой волной частота определяет цвет, поэтому такой сдвиг воспринимается как изменение цвета. Электромагнитный спектр простирается далеко за пределы видимого, но что касается света, доплеровский сдвиг в сторону более высоких частот называется синим смещением, а сдвиг в сторону более низких частот – красным смещением. При сильном синем смещении видимый свет может восприниматься как гамма-излучение, а при сильном красном смещении – как радиосигнал. Этот феномен является одним из наиболее важных и универсальных инструментов в астрономии, поскольку позволяет нам по одному лишь цвету звезды или галактики определить, приближается она к нам или удаляется.
Разумеется, на практике все немного сложнее. Некоторым звездам и галактикам просто свойствен красноватый цвет. Как же в таком случае понять, является ли какой-то объект красным на самом деле или просто кажется таковым, поскольку удаляется от нас?[28] Ключ в том, что свет представляет собой не одиночную волну с определенными характеристиками, а поток волн разных частот – спектр. Набор спектральных линий в спектре звезды обусловлен светом, поглощаемым или испускаемым различными химическими элементами в составе ее атмосферы. При разложении света с помощью призмы мы видим спектр цветов разной интенсивности, при этом темные линии или промежутки появляются на тех частотах, которые соответствуют свету, поглощенному атомами, содержащимися в атмосфере звезды, из-за чего этому свету так и не удалось достичь нас. В результате мы имеем своеобразный, уникальный для каждого элемента штрихкод из набора линий, который астрономы могут легко распознать. Например, при разложении проходящего сквозь облако водорода света по длинам волн мы увидим характерный гребнеобразный рисунок темных линий. В ходе лабораторных испытаний мы можем выяснить, где именно должны находиться эти линии и каким должен быть их рисунок для того или иного элемента. Если звезда имеет в своем спектре узнаваемую последовательность линий, но располагается она на «неправильных» частотах, это говорит о смещении спектра звезды вследствие ее движения. Если все линии одинаково смещены в сторону более низких частот, то мы имеем дело с красным смещением, которое свидетельствует об удалении звезды. Если каждая линия сдвинута в сторону более высоких частот, речь идет о синем смещении, говорящем о том, что звезда приближается. При этом степень смещения линий позволяет определить скорость движения звезды.
Астрономы достигли больших успехов в проведении подобных измерений. В настоящее время красное и синее смещение представляет собой одну из самых легко измеряемых характеристик любого источника света во Вселенной, при условии, что спектр снят и в нем присутствуют узнаваемые наборы линий. Благодаря этому мы можем понять, как звезды в нашей галактике движутся относительно нас, а также обнаружить небольшое колебание звезды, вызванное вращающейся вокруг нее планетой.
В случае с далекими галактиками красное смещение позволяет нам выяснить не только то, приближаются они к нам или удаляются, и с какой скоростью, но и определить расстояние до них. Каким образом? Дело в том, что вследствие расширения Вселенной пространство между нами и далекой галактикой увеличивается, поэтому, как бы она ни двигалась относительно нас, в целом она будет удаляться. И скорость ее удаления зависит от того, насколько далеко она находится сейчас.