Если возбуждающий нейрон слышит много голосов «за», он также отвечает «да», соглашаясь с большинством. Если ингибирующий нейрон слышит много голосов «за», он говорит «нет», в противовес преобладающему мнению. Во многих частях мозга, в том числе и в его коре, большинство нейронов – возбуждающие. Мозг можно сравнить с нашим обществом, где изобилуют конформисты, но есть и бунтари.
Действие некоторых седативных препаратов как раз и основано на усилении ингибирования: они дают больше власти ингибирующим нейронам, чтобы те подавляли активность других нейронов. Средства же, которые ослабляют ингибирование, дают больше власти возбуждающим нейронам, которые в результате способны выйти из-под контроля и даже спровоцировать эпилептический припадок. Возбуждающие нейроны можно сравнить с провокаторами, подбивающими толпу на бунт. А ингибирующие нейроны – с полицейскими, которых вызвали для того, чтобы сбить возбуждение собравшихся.
Нейробиологи исследуют и многие другие свойства синапсов. Но я надеюсь, что читателю ясно: когда мы говорим, что два нейрона «связаны», это лишь самое начало описания их взаимодействия. Связь эта может осуществляться посредством одного-единственного синапса или большего количества синапсов – химических, или электрических, или тех и других. Химический синапс характеризуется определенным направлением, в котором передается сигнал, и может являться возбуждающим или ингибирующим, сильным или слабым. Электрические токи, которые он порождает, могут быть продолжительными или краткими. Все эти факторы играют роль, когда синапсы заставляют нейроны давать пики.
Я уже отмечал, что нейронные пути идут от глаза и к ногам, и к слюнным железам. Чтобы объяснить, почему тот или иной раздражитель активирует одни пути, но не другие, я обратил особое внимание на синаптическую конвергенцию, которая играет важнейшую роль для описания процесса пикообразования в «голосовательной» модели нейронов. Если нейрон не дает пик, этот нейрон является своего рода тупиком для всех нейронных путей, которые к нему сходятся. Мириады подобных тупиков, возникающих из-за существования непикообразующих нейронов, чрезвычайно важны для функционирования мозга. В частности, они позволяют нам не захлебнуться слюной при виде змеи и не убежать при виде бифштекса.
Отказ от пикообразования столь же важен для правильного функционирования нейронов, как и само пикообразование. Вот почему одиночные синапсы и отдельные нервные пути не способны передавать импульсные пики. В рамках голосовательной модели существует два механизма, объясняющих, почему нейроны так разборчивы в своих решениях, давать ли пик и когда это делать. Я уже упоминал о том, что аксон дает нервный импульс лишь тогда, когда общий электрический ток, накопленный телом клетки, превышает некоторое пороговое значение. Подъем этого порога для аксона – способ сделать нейрон еще привередливее. Если нейрон получает голос «против» от любого ингибирующего синапса, это еще больше усиливает его избирательность, и теперь для образования пика требуется еще больше голосов «за». Иными словами, есть два механизма, предотвращающие неразборчивое образование пиков: собственно порог пикообразования и синаптическое ингибирование.
Нервные импульсы наделены двумя функциями. Возникновение пика возле тела клетки знаменует собой принятие решения. Распространение импульса по аксону сообщает другим нейронам о результате этого решения. У коммуникации и принятия решений разные цели. Цель коммуникации – сохранять информацию, передавая ее без изменений и искажений. Но в процессе принятия решений важно умение отвергать ненужную информацию. Представьте, что ваша подруга примеряет в бутике пальто и всё никак не решится купить его. На ее решение влияет множество факторов: то, насколько пальто ей подходит по размеру, цвет изделия, производитель, атмосфера в магазине и тому подобное. Вы можете долго внимать сомнениям подруги, но в конце концов потеряете терпение и воскликните: «Так ты будешь покупать эту штуку или нет?» В конечном счете играет роль итоговое решение, а не его многочисленные причины.
Похожая история и с распространением нервного импульса. Сам по себе он показывает, что нейронное голосование перевалило через нужный порог, но не сообщает подробностей о мнениях отдельных «советчиков». Иными словами, нейроны способны передавать какую-то информацию, однако при этом отбрасывают значительную ее часть. (Это напоминает мне моего отца, который обожает гордо заявлять: «Знаешь, почему я такой умный? Потому что я отлично умею забывать то, что нужно забыть».) Вот почему мозг устроен куда сложнее, чем телекоммуникационная сеть. Следовало бы сказать, что нейроны вычисляют, а не просто общаются. Мы привыкли ассоциировать вычисления со своим компьютером, ноутбуком и планшетом, но все они – лишь один из типов вычислительных приборов. Мозг относится к совсем другому типу подобных устройств.
Следует проявлять известную осторожность, сравнивая мозг с компьютером. Однако они сходны по меньшей мере в одном важном отношении. Оба «умнее» тех элементов, из которых состоят. В соответствии с моделью «неравноценного голосования» нейроны выполняют простые операции, которые сами по себе не требуют разума и которые может осуществить самое простое устройство.
Как мозгу удается быть столь сложно устроенным, ведь нейроны, казалось бы, так просты? Ну, на самом-то деле нейрон не так прост. Реальные нейроны все-таки несколько отличаются от тех, что описаны в голосовательной модели. Тем не менее одиночный нейрон не дотягивает до объекта, наделенного разумом или сознанием. Однако к таким объектам можно, по большому счету, отнести нейронные сети.
Столетия назад такую идею, возможно, трудно было бы принять. Но в наши дни мы уже привыкли к мысли, что набор глупых компонентов может оказаться очень умным. Никакая из деталей компьютера не способна играть в шахматы, зато огромное количество таких деталей, организованных должным образом, сообща может разгромить чемпиона мира. Организованное функционирование миллиардов глупых нейронов – вот что делает человека умным. И тут мы подходим к самому глубокому вопросу нейробиологии. Как организация нейронов в вашем мозгу позволяет вам воспринимать мир, думать, выполнять другие умственные задачи? Ответ кроется в коннектоме.
Глава 4Кругом одни нейроны
Нервные импульсы да выработка нейротрансмиттеров – вот и всё. Что же, наше сознание выражается лишь этими физическими процессами, которые идут у нас в черепной коробке? Нейробиологи не сомневаются, что так и есть. Но большинство людей, с которыми я встречался, как-то сопротивляется этой идее. Даже ярые поклонники нейронауки, в начале встречи бомбардирующие меня вопросами касательно мозга, позже зачастую выражают убежденность, что сознание все-таки в конечном счете зависит от какой-то нематериальной сущности вроде души.
Мне, признаться, неизвестны никакие объективные научные доказательства существования души. Почему люди в нее верят? Вряд ли единственная причина тут – собственно религия. Каждый человек, вне зависимости от того, верующий он или нет, чувствует, что он – единичная, одинокая и цельная сущность, которая воспринимает, принимает решения и действует. Утверждение «Я увидел змею, и я убежал» предполагает наличие этой цельной сущности. Ваше (и мое) субъективное ощущение таково: «Я один». Напротив, нейронаука заявляет, что единство сознания – лишь иллюзия, под которой кроются нервные импульсы и секреции колоссального числа нейронов. Эту концепцию личности можно выразить так: «Меня много».
Какова же все-таки реальность? Множество нейронов или одна душа?
В 1695 году немецкий философ и математик Готфрид Лейбниц выступал в защиту второго утверждения:
Более того, посредством души или формы являет себя единая сущность, находящаяся в согласии с тем, что называется в нас Я; такое не может происходить в созданных человеком механизмах или же в простой массе материи, сколь бы организованна она ни была.
В последние годы жизни он пошел еще дальше и предположил, что машины и механизмы изначально не способны к восприятию:
Следует признать, что восприятие и то, что от него зависит, необъяснимо с помощью математических принципов, то есть через цифры, фигуры и движения. Воображая себе машину, чья конструкция позволит ей мыслить, чувствовать и обладать восприятием, невольно представляешь себе гигантское сооружение наподобие ветряной мельницы, куда можно входить не нагибаясь. Но, войдя, вы обнаружите внутри лишь части, толкающие друг друга, и ничто не объяснит вам, каким образом осуществляется здесь восприятие.
Лейбниц мог лишь воображать себе наблюдение деталей машины, которая умеет воспринимать и мыслить. К тому же он выстроил это умозрительное рассуждение лишь для подкрепления тезиса, что такая машина не может существовать. Но его фантазия давно сбылась в самом буквальном смысле – если рассматривать мозг как машину, сделанную из деталей-нейронов. Нейробиологи часто измеряют нервные импульсы в живом, действующем мозгу. (Технология количественной оценки секреции нейротрансмиттеров менее развита.)
Большинство таких измерений выполняется на подопытных животных, но иногда и на людях. Нейрохирург Ицхак Фрид оперирует страдающих острыми формами эпилепсии. Как и Пенфилд, перед операцией он с помощью электродов строит карту мозга, что позволяет ему делать и научные наблюдения (всегда с согласия пациента). В ходе совместного эксперимента с нейробиологом Кристофом Кохом и другими специалистами Фрид показывал нескольким пациентам подборку фотоснимков и записывал уровень нейронной активности срединной части лобной доли мозга – СЧЛД. («Срединная» здесь означает «близкая к плоскости, разделяющей левое и правое полушария».) Таким путем изучили многие нейроны, но особенно прославился один. Фрид случайно обнаружил нейрон, который выдавал множество импульсов, когда пациент рассматривал фотографии актрисы Дженнифер Энистон. Однако этот нейрон жил довольно спокойно (не порождая импульсы или порождая лишь небольшое их количество), когда пациент смотрел на снимки иных знаменитостей, обычных людей, достопримечательностей, животных и т. п. Даже фото Джулии Робертс, другой очаровательной кинозвезды, не вызывало никакого отклика.