По мере того как нейробиологи всё больше и больше узнав али о регенерации, дедовские методы простого подсчета нейронов казались всё более грубыми и примитивными. Нам хотелось бы знать, почему одни нейроны выживают, а другие отмирают. Согласно дарвинистской теории, о которой мы говорили ранее, выживают те новые нейроны, которым удается интегрироваться в сеть уже существующих, создав правильные связи. Но мы плохо представляем себе, что такое «правильные связи», и вряд ли нам удастся это выяснить – до тех пор, пока мы эти связи не увидим. Вот почему коннектомика должна сыграть важную роль в объяснении того, насколько регенерация помогает процессу обучения – и помогает ли вообще.
Я говорил о четырех типах изменения коннектома – ИСВ, рекомбинации связей, переподключении и регенерации. Эти четыре процесса играют важную роль в совершенствовании нормального мозга и в исцелении поврежденного или больного. Вероятно, главная цель нейронауки как раз и состоит в том, чтобы полностью выявить потенциал четырех процессов. Отрицание одного или нескольких из них в былые времена становилось основой для тех или иных гипотез коннектомного детерминизма. Теперь мы знаем, что такие гипотезы – чересчур упрощенные, они не отражают истинное положение вещей. Необходимо указывать условия, при которых эти гипотезы работают.
Более того, потенциал четырех процессов не является чем-то фиксированным и незыблемым. Я уже отмечал, что мозг после травмы способен усилить рост аксонов. Более того, известно, что повреждение неокортекса «привлекает» новорожденные нейроны, мигрирующие в зону повреждения, тем самым становясь еще одним исключением из заповеди «никаких новых нейронов в зрелом мозгу». Эти эффекты, рождающиеся при повреждениях, возникают про посредничестве молекул, которые сейчас пристально изучают специалисты. Теоретически говоря, мы могли бы способствовать проявлению четырех процессов искусственным путем, манипулируя такими молекулами. Именно так гены влияют на коннектомы, и лекарства будущего станут делать то же самое. Однако на четыре процесса влияет и приобретаемый человеком опыт, так что более тонкую настройку можно будет производить, сочетая вмешательство на молекулярном уровне с подбором режимов обучения и подготовки.
Эта нейробиологическая повестка дня звучит многообещающе, но действительно ли она выведет нас на путь истинный? Ведь она опирается на некоторые важные допущения, которые довольно убедительны, однако по большей части не подтверждены. А главное – верно ли, что изменение ума и сознания в конечном счете сводится к изменению коннектома? Таково очевидное следствие из теорий, которые низводят восприятие, мышление и другие проявления умственно-психической деятельности к рисунку нервных импульсов, порождаемых рисунком нейронных связей. Проверка этих теорий покажет нам, действительно ли правы коннекционисты. В мозгу действительно идут четыре процесса коннектомных изменений, но пока мы можем лишь умозрительно рассуждать о том, как они вовлечены в процессы обучения. Согласно дарвинистской точке зрения, синапсы, нейроны и отростки нейронов создаются для того, чтобы улучшить обучаемость мозга, увеличивая его потенциал – в частности, путем хеббовского усиления, позволяющего выживать определенным синапсам, нейронам и нейронным отросткам. Остальные отмирают, если возможности, которые они предоставляют, оказываются невостребованными. Без тщательного изучения этих теорий мы вряд ли сумеем по-настоящему поставить себе на службу мощь четырех процессов.
Для придирчивой и вдумчивой проверки положений коннекционизма мы должны подвергнуть их эмпирическому исследованию. Нейробиологи уже больше столетия пытаются как-то подступиться к этой задаче, но пока, в сущ ности, даже не начали ее решать. Проблема в том, что главный объект этой доктрины – собственно коннектом – пока остается ненаблюдаемым. Сейчас еще трудно или даже порой невозможно изучать связи между нейронами. До сего времени методы нейроанатомии применялись для решения более примитивной задачи – построения карты связей между различными участками мозга.
Да, мы постепенно приближаемся к цели, но скорость этого движения нужно резко увеличить. Потребовался десяток лет, чтобы найти коннектом червя C. elegans, а отыскать коннектомы в мозгу, больше похожем на наш с вами, конечно же, куда труднее. В следующей части книги я расскажу о передовых технологиях, которые разрабатываются для поиска коннектомов, и о том, как они будут применяться в новой науке – коннектомике.
Часть четвертаяКоннектомика
Глава 8Видеть – значит верить
Обоняние дразнит аппетит, слух помогает спасти отношения с партнером, а зрение – это вера. Органы чувств говорят нам, что реально, а что нет, и в этом мы больше всего полагаемся именно на глаза. Что это – биологическая случайность, просто попутный результат эволюции наших органов чувств и мозга? Если бы собака могла делиться с нами своими мыслями не только лая или помахивая хвостом, она бы, возможно, заявила: «Нюхать – значит верить». А когда летучая мышь завтракает насекомым, поймав его во мраке благодаря эху его ультразвуковых поскрипываний, она наверняка думает: «Слышать – значит верить». Так или нет?
А может быть, то предпочтение, которое мы отдаем зрению, коренится не в биологии, а глубже, в законах физики? Прямые линии лучей, должным образом преломленные хрусталиком глаза, передают пространственные взаимоотношения между частями воспринимаемого объекта. К тому же в зрительных образах содержится столько информации, что ими не так-то просто манипулировать, к примеру, для создания фальшивок. (Во всяком случае, так было до эпохи компьютеров.)
Как бы там ни было, зрение всегда играло центральную роль в наших верованиях и убеждениях. В житиях многих христианских святых описывается, как божественные видения (апокалиптические или вполне мирные) нередко обращали язычников в верующих. В отличие от религии наука должна применять методы, основанные на четких формулировках и эмпирической проверке гипотез. Но и науку могут подталкивать вперед визуальные откровения – внезапные и простые картины чего-то удивительного. Иногда научный поиск сводится к тому, чтобы суметь увидеть.
В этой главе я расскажу об инструментах, которые создали нейробиологи, чтобы приподнять покров скрытой реальности. Возможно, это покажется вам ненужным отступлением от нашей главной темы – мозга. Но я надеюсь убедить вас в обратном. Военные историки смакуют хитроумные тактические ходы, придуманные гениальными полководцами, однако в исторической перспективе понятно, что куда важнее в военном деле оказываются технические новшества. Изобретение огнестрельного оружия, истребителя и атомной бомбы – все это каждый раз полностью меняло лицо войны.
Вот и историки науки превозносят великих ученых и их революционные открытия, при этом гораздо меньше славят создателей научных приборов, хотя влияние этих изобретений на развитие знания порой бывает не менее существенным. Многие из важнейших научных открытий явились прямым следствием таких изобретений. Так, в XVII веке Галилео Галилей усовершенствовал телескоп, сделав увеличение из трехкратного тридцатикратным. Наведя это оптическое устройство на Юпитер, он обнаружил вращающиеся вокруг него спутники, что перевернуло традиционные представления, согласно которым все небесные тела вращаются вокруг Земли.
В 1912 году физик Уильям Лоренс Брэгг продемонстрировал, как применять рентгеновские лучи для того, чтобы определять положение атомов в кристаллической решетке, а три года спустя, в двадцатипятилетнем возрасте, он получил за свою работу Нобелевскую премию[13]. Позже именно рентгеновская кристаллография позволила Розалинд Франклин, Джеймсу Уотсону и Фрэнсису Крику открыть структуру ДНК, знаменитую двойную спираль.
Слышали анекдот про двух экономистов, идущих по улице? «Гляди-ка, вон на тротуаре валяется двадцатка!» – восклицает один. «Не будь дураком, – отвечает другой, – если бы там и правда лежали двадцать баксов, кто-нибудь давно бы их подобрал». Эта шутка обыгрывает так называемую гипотезу эффективности рынка (ГЭР), довольно спорную систему взглядов, согласно которой не существует справедливого и надежного метода инвестирования, который позволил бы получить прибыль выше среднерыночной. (Не отвлекайтесь, вы скоро увидите связь с нашей темой.) Разумеется, существуют ненадежные способы превысить среднерыночную прибыль. Углядев в новостях материал о какой-то компании, можно накупить ее акций и потом радоваться, когда они пойдут вверх. Но вероятность этого – не выше, чем вероятность под утро уйти из ласвегасского казино с выигрышем. А еще есть нечестные способы обогнать рынок. Скажем, если вы работаете в фармацевтической фирме, не исключено, что вы первым узнаете: такое-то лекарство успешно прошло клинические испытания. Но если вы купите акции своей компании на основе таких недоступных широкой публике сведений, вас могут привлечь к суду по обвинению в корыстном использовании инсайдерской информации.
Ни те, ни другие методы не подходят под критерии ГЭР, подразумевающие справедливость и надежность. Можно предположить даже, что таких методов вовсе не существует. Профессиональные инвесторы ненавидят такие заявления, предпочитая думать, что они преуспевают благодаря собственной сметливости. Но ГЭР уверяет: либо им повезло, либо они, скажем уж прямо, оказались не очень-то чистоплотны в делах.
Эмпирические доводы за и против ГЭР многообразны и сложны, но ее теоретическое обоснование достаточно просто. Если новая информация указывает на то, что акции поднимутся в цене, то первые же инвесторы, узнавшие эти сведения, волей-неволей создадут на рынке ситуацию, когда эти акции будут продаваться дороже. А следовательно, заключает ГЭР, на рынке попросту не останется выгодных инвестиционных возможностей, точно так же, как вы никогда (ну,