Коннектом. Как мозг делает нас тем, что мы есть — страница 34 из 83

* * *

Гейдельберг, очаровательный немецкий город примерно в часе автомобильной езды от Франкфурта, совсем не похож на фабрику технологий будущего. Полуразрушенный замок привлекает толпы туристов. Старая часть города вымощена брусчаткой и пестрит барами и ресторанами, где горланят развеселые студенты университета имени Рупрехта и Карла. Если вы чувствуете потребность предаться глубокомысленным раздумьям, отправляйтесь по Философской тропе, на вершину холма. Оттуда открывается великолепный вид на реку Неккер. Здесь витает дух гейдельбергских интеллектуалов прошлого – вспомним хотя бы Гегеля или Ханну Арендт.

Возле одного из мостов через Неккер угнездилось кирпичное строение – Институт медицинских исследований Общества имени Макса Планка (Янштрассе, 29). Здание кажется довольно скромным, однако тут работали пять нобелевских лауреатов! Это один из восьмидесяти элитных институтов при Обществе имени Макса Планка, которое смело можно назвать жемчужиной немецкой науки. Каждым институтом одновременно руководит несколько директоров, и каждый директор распоряжается солидным бюджетом, имеет небольшую армию помощников по науке и вышколенный технический персонал. Общество имени Макса Планка принимает решение в ходе голосования своих членов – нескольких сотен директоров институтов. Это клуб для самых-самых избранных.

Одним из директоров института на Янштрассе, 29 был Берт Сакман, получивший (совместно с Эрвином Неером) в 1991 году Нобелевскую премию за создание «метода локальной фиксации потенциала ионных каналов в клеточных мембранах», ныне – одного из стандартных инструментов нейрофизиолога. Он, в свою очередь, предложил Винфриду Денку стать новым директором института. Тот не отказался.

Денк – мужчина крупный, у него властный вид германского феодала. (Возможно, этому не стоит удивляться, ведь директора институтов Общества имени Макса Планка в каком-то смысле занимают в современном мире такое же положение, какое в Средние века занимали феодальные князья.) Денк поражает и своим остроумием. Научная лаборатория обычно не очень-то притягивает великих комиков, но бывают исключения. Никогда не забуду семинар одного блистательного специалиста по прикладной математике, пересыпанный уморительными шутками касательно секса, наркотиков и рок-н-ролла, я хохотал до колик в животе и до слез, мешавших мне разглядеть уравнения на доске. Афоризмы Денка свидетельствуют о живости его ума. Чтобы их оценить в полном объеме, вам лучше быть «совой», поскольку Денк предпочитает «график Дракулы», вставая поздно и зарабатываясь почти до рассвета. Вы не пожалеете о недосыпе: после полуночи остроты и каламбуры сыплются из него, как из рога изобилия.

В подвале дома на Янштрассе располагаются три электронных микроскопа, надежно укрытые в специальных отсеках от перепадов температуры. В металлических корпусах микроскопов с помощью специальных насосов создан вакуум, чтобы электроны свободно летали, не сталкиваясь с молекулами воздуха. Микроскопы эти немного капризны: то и дело какой-нибудь из них требует ремонта. Но остальные два могут при этом без перерывов сканировать образцы мозговой ткани неделями или даже месяцами.

Денк впервые прибыл в Гейдельберг, уже будучи ученым с мировым именем, он – один из изобретателей двухфотонного микроскопа. (Я уже рассказывал, что этот прибор применяли для наблюдения процессов возникновения и исчезновения синапсов в живом мозге различных представителей подопытной фауны.) Перетряхнув световую микроскопию, он решил автоматизировать серийную электронную. Его идея отличалась простотой: следует делать снимки поверхности образца, обнажаемой при отрезании ломтей, а не получать изображение самих ломтей, которые от нее отделяются.

В 2004 году Денк обнародовал свое изобретение – автоматическую систему, которая представляла собой ультрамикротом, вмонтированный в вакуумную камеру электронного микроскопа. Он назвал свой метод «серийной сканирующей электронной микроскопией основного блока образца». От этого основного блока «отскакивают» направляемые на него электроны, благодаря чему удается получить двухмерное изображение поверхности образца. Затем лезвие ультрамикротома срезает с этой поверхности тоненький слой, тем самым обнажается новая поверхность, и микроскоп делает очередной снимок. Этот процесс повторяется снова и снова. В итоге получают целую стопку двухмерных снимков – похожих на те, что дает обычная серийная электронная микроскопия.

Почему лучше получать изображение основного блока образца, а не срезов? Потому что блок относительно прочен, а срезы очень уязвимы. Даже если бы они не повреждались из-за неправильного обращения, все равно каждый из них чуть-чуть деформируется, причем всякий – по-разному. В итоге объемное изображение получается искаженным. А вот снимки поверхности основного блока образца не содержат таких искажений (или содержат лишь небольшие), поскольку основной блок практически не деформируется при срезании слоев.

Так как ведется съемка поверхности основного блока образца, а не срезов, оказалось возможным поместить ультрамикротом внутрь электронного микроскопа, создав автоматизированную систему, объединяющую в себе и срезание слоев, и построение изображения. Это повысило надежность и точность измерений, исключив чреватую ошибками стадию ручной переноски срезов от ультрамикротома к микроскопу. Срезы, получаемые новым методом, имели толщину всего 25 нанометров – вдвое меньше, чем максимально достижимая при ручном срезании и переносе.

Подобно альпинистам, ученые вечно бьются за приоритет. Слава достается первооткрывателям, а не тем, кто идет за ними. Но наука чем-то похожа и на инвестирование в бизнес-проекты: можно не только опоздать, но и чересчур поторопиться. В своей статье 2004 года Денк признаёт заслуги Стивена Литона, который высказал сходную идею еще в 1981 году. Изобретение Литона в то время не удалось применить на практике, поскольку его микроскоп выдавал бы слишком много информации, ее в ту эпоху просто не смогли бы должным образом обработать. А к тому времени, когда Денк (независимо от Литона) разработал свою методику, компьютеры уже достаточно усовершенствовались, чтобы хранить большие объемы данных.

Как угадать, когда придет время для воплощения той или иной идеи? Тут как с инвестициями: зачастую такие вещи понимают лишь задним числом, когда уже поздно извлекать сверхприбыли. Один из диагностирующих признаков – изобретение, одновременно и независимо совершаемое двумя людьми. Но еще более верная примета – нахождение двух различных решений для одной и той же задачи. Оказывается, кроме Денка были и другие специалисты, которые тоже пытались автоматизировать процесс наблюдения всё более мелких объектов.

* * *

На стенах северо-западного корпуса Гарвардского университета плющ не растет. Их гладкая стеклянная поверхность не дает и намека на историю[14]. Однако это здание находится на переднем крае гарвардских научных изысканий. Войдем в просторный вестибюль, спустимся в подвальный этаж. Перед вашими глазами предстает удивительное, сложнейшее устройство, типичная машина Руба Голдберга[15] (см. рис. 30). Не сразу понятно, куда смотреть. Но тут вы замечаете медленное движение крошечного пластмассового брусочка. Он прозрачен, слегка поблескивает оранжевым и заключает в себе черную крупицу – окрашенный кусочек мышиного мозга.


Рис. 30. Гарвардский ультрамикротом


Некоторые части машины медленно вращаются. С одной катушки на другую перематывается лента, словно в магнитофоне семидесятых годов прошлого века. На столе рядом с машиной лежит еще одна катушка. Вы отматываете с нее немного пластмассовой ленты, смотрите на свет и видите срезы мозга, расположенные на ней с одинаковыми интервалами. Наконец вы понимаете, что функция этого устройства – превращать фрагмент мозга в подобие кинопленки, записывая на ленту один срез мозга за другим.

Делать такие срезы уже само по себе непросто. Собирать их еще сложнее. Как знает всякий повар-любитель, при резке тоненькие ломтики часто прилипают к ножу, а не падают на разделочную доску, как им полагается. В традиционном ультрамикротоме эта проблема решается благодаря кювете с водой. Нож укреплен на одном из ее краев, и отрезаемые кусочки аккуратно опускаются на поверхность жидкости. Затем оператор один за другим осторожно вынимает эти срезы из воды и переносит их под электронный микроскоп для получения снимков. Одно неверное движение – и на срезе появятся неприятные складки или он вообще окажется испорчен и не пригоден для микроскопии.


Рис. 31. Свежие срезы мозга собираются на пластиковую ленту, поднимающуюся из воды


В гарвардском ультрамикротоме, как и в обычном, применяется кювета с водой: с ее помощью полоска срезов мозга стягивается с ножа. Новый элемент – пластиковая лента, поднимающаяся с поверхности воды и напоминающая ленту конвейера. (Ищите эту пластиковую ленту в нижней части фотографии, представленной на рис. 31. Может быть, вам даже удастся разглядеть два среза мышиного мозга, они касаются друг друга краями на вертикальной полоске, идущей по центру ленты.) Каждый срез прилепляется к движущейся ленте и выносится ею из воды на воздух, где быстро высыхает. В итоге мы получаем набор нежных срезов, прилепленных на куда более толстую и прочную ленту, которая и наматывается на катушку. Важная отличительная особенность прибора состоит в том, что он исключает ошибки, связанные с человеческим фактором: оператору вообще не нужно вручную управляться со срезами. А пластиковая лента очень прочна и стойка, ее практически невозможно разрушить.

Первый прототип автоматического ленточного ультрамикротома (АЛУМ) соорудили в весьма скромной обстановке – в гараже, расположенном за тысячи миль от Гарварда, в городе Альгамбра под Лос-Анджелесом. Его изобретатель, Кен Хейворт, – долговязый очкарик с решительной походкой и бойкой речью. Работая инженером в лаборатории реактивных двигателей НАСА, Хейворт конструировал системы внутренней навиг