Оптическую микроскопию можно применять и для построения карт зональных коннектомов. Чтобы применить этот подход к коре головного мозга, мы должны картографировать определенную часть конечного мозга, о которой я еще не говорил. Речь идет о белом веществе. Вспомните, конечный мозг, сидящий на стволе мозга, напоминает фрукт на стебле. Кожура этого фрукта – кора головного мозга, называемая еще серым веществом. Разрежьте фрукт, и обнажится его мякоть – белое вещество (рис. 48).
Рис. 48. Серое и белое вещество головного мозга
Серое и белое вещество различали еще в античности, но их фундаментальные различия стали ясны лишь с открытием нейронов. Серое вещество, располагающееся на поверхности мозга, являет собой смесь всех частей нейронов – тел клеток, дендритов, аксонов и синапсов, – тогда как белое вещество содержит лишь аксоны. Иными словами, белое вещество (располагающееся под поверхностью мозга) – это одни только «провода».
Большинство аксонов белого вещества идут от нейронов окружающей его коры головного мозга. Эти аксоны принадлежат пирамидальным нейронам, составляющим около 80 % всех кортикальных нейронов. Я уже упоминал, что у тела нейронов этого типа треугольная или пирамидальная форма и что их аксоны забираются далеко от тела клетки. Проясним картину. Вершина пирамиды направлена в сторону внешней части мозга. Аксон выходит непосредственно из основания пирамиды, перпендикулярно плоскости коры, и входит в белое вещество, как показано на рис. 49.
Рис. 49. Главная и боковые ветви аксона пирамидального нейрона
Погружаясь в серое вещество, аксон выбрасывает боковые ветви, при помощи которых создает синапсы с близлежащими нейронами. Но основная ветвь аксона в конце концов выходит из серого вещества и входит в белое, начиная свой долгий путь к другим участкам мозга. В каждом из таких пунктов назначения аксон выбрасывает множество ветвей, соединяясь с тамошними нейронами.
Некоторые аксоны не забираются очень уж далеко, они снова входят в серое вещество недалеко от того места, где начали расти. Однако большинство аксонов пирамидальных нейронов идут в другие участки коры. Есть среди них и такие аксоны, которые добираются до другой стороны мозга. Отдельные аксоны белого вещества (таких меньшинство) соединяют кору с другими структурами мозга – мозжечком, стволом, даже со спинным мозгом. Эти аксоны составляют меньше одной десятой доли всего белого вещества. Кора головного мозга во многом замкнута на себя, она «общается» главным образом сама с собой, а не с окружающим миром.
Можно использовать такой образ. Если аксоны и дендриты в сером веществе – как улицы вашего района, то аксоны белого вещества – своего рода автострады мозга. Они относительно широки, почти не имеют ответвлений, а кроме того, чрезвычайно длинны. Совокупная длина этих аксонов составляет примерно 150 тысяч километров – почти половина расстояния от Земли до Луны. Здесь-то и таится сложность: чтобы отыскать зональный коннектом, нужно проследить путь каждого аксона в белом веществе.
Рис. 50. Поперечное сечение аксона, покрытого миелином
Задача кажется непосильной, однако ее можно решить, разрезав белое вещество на слои, получив снимки каждого слоя и затем с помощью компьютеров проследив за маршрутом каждого аксона, отображенного на этих снимках. Начальная и конечная точки каждого маршрута будут соответствовать связи между двумя определенными пунктами коры головного мозга. Может быть, это чересчур сложный подход и его не удастся применить на практике? В конце концов, объем белого вещества головного мозга вполне сопоставим с объемом серого, а ведь мы по-прежнему тщетно пытаемся реконструировать хотя бы один кубический миллиметр серого вещества. Но мое предложение покажется вам менее безумным, когда вы узнаете, что аксоны белого вещества видимы и при более низком разрешении.
Возьмем для примера снимок поперечного сечения аксона, показанный на рис. 50. Выходя за пределы серого вещества, большинство аксонов претерпевают важную трансформацию: другие клетки начинают их укутывать, обертывая во много слоев. Таким образом, мозг не только осуществляет подключение при помощи «проводов», но и ухитряется окружать их «изоляцией». Она сделана из миелина – вещества, состоящего преимущественно из молекул жиров. Именно благодаря этим молекулам белое вещество выглядит белым. (Таким образом, обзывательство «жиртрест», распространенное среди некоторых грубиянов, на самом деле можно применить к кому угодно, в том числе и к самим грубиянам.) Миелинизация ускоряет распространение нервных импульсов, что важно для быстрой передачи сигналов в крупном мозгу. Расстройства миелинизации (например, множественный склероз) оказывают катастрофическое влияние на функционирование мозга.
Миелинизированные аксоны белого вещества гораздо толще (обычно 1 мкм толщиной), чем большинство немиелинизированных аксонов серого вещества. Более того, если нас занимает лишь нахождение зонального коннектома, нам вовсе не обязательно видеть синапсы. Если аксон входит в какой-то участок серого вещества и разветвляется там, мы можем быть почти уверены, что он создает синапсы, так что достаточно проследить за «проводами» белого вещества, чтобы найти зональный коннектом. Ограничившись миелинизированными аксонами, мы сможем проделать эту работу с помощью серийной оптической микроскопии, которая аналогична серийной электронной, только здесь применяются более толстые срезы, а снимки получаются в более низком разрешении.
Разумеется, построение карты аксонов белого вещества – по-прежнему неподъемная задача, если речь идет о мозге размером с человеческий. Неплохо начать с изучения белого вещества в мозгу меньшего размера – скажем, грызунов или низших приматов. Результаты можно проверять, сравнивая их с данными, которые получены путем изучения нервных путей белого вещества животных с помощью более старых технологий. Когда-то они позволяли найти связи между зрительными зонами в коре головного мозга макаки (см. рис. 51; сами эти области, без связей между ними, показаны ранее). Поскольку эти старые технологии не применимы для изучения человеческого мозга, наше собственное белое вещество пока остается почти совершенно неизученным.
Проект «Коннектом человека» уже сейчас пытается построить подобную карту для человеческого мозга. При этом используется метод диффузионной магнитно-резонансной томографии (дМРТ), а не микроскопия. Диффузионная МРТ отличается от классической МРТ, с помощью которой определяют размеры участков мозга, или от функциональной МРТ, применяемой для оценки степени их активации. К сожалению, дМРТ при этом обладает тем же важнейшим ограничением, что и другие виды магнитно-резонансной томографии: низким пространственным разрешением. МРТ обычно дает разрешение в 1 мм, а этого недостаточно для того, чтобы разглядеть единичный нейрон или аксон. Как же при таком плохом разрешении мы надеемся проследить за «проводами» белого вещества при помощи дМРТ?
Рис. 51. Связи между зрительными зонами в коре головного мозга макаки-резус (ср. с рис. 39)
Как выясняется, белое вещество обладает любопытным свойством, которое делает его структуру проще, чем у серого вещества. Вы когда-нибудь забывали помешивать спагетти после того, как бросили их в кипящую воду? Свою ошибку вы обнаруживаете несколько минут спустя, когда видите, что некоторые макаронины слиплись, образуя пучки. Плод этой кулинарной неудачи чем-то напоминает белое вещество. Серое же вещество больше смахивает на тарелку полностью перепутавшихся спагетти.
Когда аксоны слипаются, подобно неперемешиваемым макаронам, они образуют «волоконный тракт», или «нервный путь белого вещества». Их пучки похожи на нервы, только идут они внутри мозга. Почему аксоны слипаются? Ну, а почему многие ходят по одним и тем же тропкам через газоны? Во-первых, так короче, а значит, такой путь оптимальнее мощеных дорожек, устроенных ландшафтными дизайнерами. Во-вторых, тут работает эффект «следования за лидером»: когда несколько первопроходцев слегка примнут траву, за ними пойдут все остальные – и совершенно ее вытопчут. Точно так же и аксоны пролагают эффективные пути через белое вещество: мы предполагаем, что в ходе своей эволюции оно следовало принципу «экономии проводов», о котором мы говорили раньше. Поскольку оптимальное решение часто оказывается единственным, можно ожидать, что аксоны одного и того же происхождения, идущие в один и тот же пункт назначения, будут следовать по одному и тому же маршруту. Кроме того, известно, что первые из аксонов, вырастающих в ходе развития мозга, часто как раз «прокладывают путь», выделяя особые химические вещества, помогающие другим аксонам идти по этому же пути.
Волоконные тракты бывают сравнительно толстыми, хотя единичный аксон микроскопически тонок. Самый толстый из волоконных трактов – знаменитое мозолистое тело, гигантский набор аксонов, соединяющих левое и правое полушария. Нейроанатомы XIX века, рассекая мозг, невооруженным глазом обнаружили ряд других трактов. Диффузионная МРТ – большой шаг вперед, замечательное и вдохновляющее достижение: оно позволяет следить за нейронными маршрутами в белом веществе живого мозга. Для каждого исследуемого участка прибор рисует стрелку, показывающую ориентацию тамошних аксонов. Соединяя эти стрелки, можно проследить за маршрутами аксональных пучков. ДМРТ часто позволяла ученым добиться успеха в таких исследованиях. Вот один пример, который стоит упомянуть: благодаря этому методу удалось обнаружить нервные пути белого вещества, соединяющие центры Брока и Вернике в придачу к давно известным путям, расположенным в дугообразном пучке. Как я уже отмечал, такие находки позволяют коренным образом пересмотреть речевую модель Брока – Вернике.
Такие примеры ободряют, но у дМРТ, напомним, есть и ограничения. Из-за низкого пространственного разрешения, о котором мы говорили выше, с помощью этого метода трудно прослеживать тонкие волоконные тракты. Даже толстые тракты порой трудно проследить, если они пересекаются с другими и аксоны этих трактов «перемешиваются». Можно сравнить такое пересечение с хаотичным городским перекрестком, набитым пешеходами, велосипедистами, гужевым транспортом и, разумеется, автомобилями. Следует очень пристально всматриваться, чтобы увидеть, движется определенный путник прямо или же поворачивает. С аксонами похожая история. Как только аксоны входят в зону мозга, где пересекаются два пучка, с помощью дМРТ трудно увидеть, куда эти аксоны приходят. Застраховать от подобных ошибок при картографировании белого вещества способен лишь метод, позволяющий отслеживать маршруты отдельных аксонов (я предложил пример такого метода выше).