…нервный импульс обычно движется по аксону от тела клетки… Это так называемый закон динамической поляризации. Нейробиологи иногда нарушают его при помощи электрической стимуляции порождая пик, который идет в обратную сторону – по аксону к телу клетки. Такое «антидромное» распространение импульса в направлении, противоположном нормальному, доказывает, что передача сигнала по аксону возможна в обоих направлениях.
…и клеток, которые поддерживают их существование. В нервной системе есть и клетки, которые не являются нейронами. Эти клетки называют глиями. Они принадлежат к различным типам и совершенно необходимы для поддержания жизни и нормального функционирования мозга. Я придерживаюсь традиционного сравнения: глиальные клетки – словно съемочная группа, помогающая актерамнейронам, которые снимаются в нашем умственно-психическом фильме. Количество нейронов и глиальных клеток примерно одинаково (Azevedo et al., 2009). Подробнее о глиях см. в: Fields, 2009.
…аксоны нервов создают синапсы с волокнами мышц… Так называемые нейромышечные стыки: термин ввели, чтобы отличать их от обычных синапсов между нейронами.
«Человек способен лишь перемещать предметы…» Sherringt on, 1924.
…190 станций. Bradley, 1920.
Почти все синапсы слабы. Некоторые радикально настроенные специалисты убеждены, что существует небольшое количество сильных синапсов, играющих важнейшую роль в функционировании мозга.
…отдельный нервный путь обычно не способен сам по себе передать импульс. Хотя синапсы слабы, отдельный нейрон все-таки может заставить другой нейрон породить нервный импульс. Просто нужно, чтобы эти нейроны соединяло большое количество синапсов. Однако на практике такая ситуация встречается, судя по всему, редко.
…все синапсы, созданные аксоном с другими нейронами… На самом-то деле синапсы ведут себя стохастическим образом. При каждом нервном импульсе какой-то случайный набор синапсов отказывается выделять нейротрансмиттер.
…сигналы идут по всем возможным путям… В случае со змеей ваши глаза передают сигнал ногам, а не слюнным железам. В случае с бифштексом – наоборот. В телекоммуникационных сетях такая избирательность достигается с помощью маршрутизации. У каждого послания есть свой адрес, отличающийся от содержания послания. Яркий пример – отправка бумажного письма. Адрес пишется на конверте, а само письмо находится внутри. Та же история с телефоном. Вы набираете номер, чтобы сделать звонок, но «посланием» будет уже не набранный номер, а содержание последующего разговора. Узел коммуникационной сети отправляет входящее послание по нужному маршруту, определяя его адрес и передавая его на узел, который находится ближе к пункту назначения. Послание движется по сети в зависимости от этих решений. Решения принимают сотрудники почтовых контор или многочисленные реле телефонной сети. Даже если бы отдельный нервный путь мог передавать импульсы, не совсем понятно, как нервная система могла бы направлять их по нужному нервному пути, чтобы те достигли пункта назначения. Аксоны не занимаются никакой маршрутизацией, они просто направляют нервные импульсы по всем своим синапсам. Возможно, маршрутизацией занимается еще какая-то часть нейрона, однако вся эта концепция имеет один фундаментальный недостаток: неясно, каким образом ипульс может нести в себе одновременно и послание, и его адрес. Вот почему телекоммуникационные сети – возможно, не лучшее сравнение для мозга. Однако это теоретическое возражение не снимает вероятности того, что послания могут состоять из последовательности пиков, что маршрутизаторами могут выступать группы нейронов и что мозг, рассматриваемый на более глубинном уровне, все-таки окажется похож на телекоммуникационную сеть. Некоторые теоретики упорно считают, что идея маршрутизации помогает лучше разобраться в функционировании мозга (Olshausen, Anderson, Van Essen, 1993).
Если в дендритах не хватит пиков… Хойзер (Häusser et al., 2000), а также Стюарт (Stuart et al., 2007) рассказывают о том, что традиционная концепция «Дендриты не дают нервных импульсов» в последнее время подвергается сомнению. Опыты на живых нейронах срезов мозга показали, что дендриты могут давать пики. Если это явление происходит и в нетронутом мозгу, может оказаться, что каждый дендрит нейрона принимает голоса своих синапсов, а затем тело клетки учитывает волеизъявление своих дендритов. Это похоже на президентские выборы в США, где на всеобщих выборах голосуют жители штата, избирая выборщиков, а затем уже голосует коллегия выборщиков от каждого штата. В принципе кандидат может выиграть эти двухстадийные выборы, не получив большинства голосов населения.
Сильные синапсы порождают сильный ток в дендритах… Мы упрощаем. Понятие силы синапса достаточно сложно, чтобы его можно было выразить одним-единственным численным показателем.
…модели «неравноценного голосования». Инженеры называют ее «линейной пороговой моделью» нейрона, а подсчет голосов – линейной операцией, тогда как преодоление порога – операция нелинейная. Еще одно название для этой модели – «простой перцептрон».
…этот «подсчет» занимает от нескольких миллисекунд до нескольких секунд. В этом химические синапсы тоже оказываются проворнее своих электрических коллег.
Ингибирующие синапсы… Более очевидные доказательства важности синаптического ингибирования можно получить, изучая движение. Мышцы, как правило, объединены в пары, два элемента которых обладают противоположным действием. Пример – бицепсы и трицепсы, расположенные по сторонам верхней части рук. Бицепс сгибает вашу руку в локте, трицепс – разгибает. Нервная система постоянно посылает импульсы бицепсам и трицепсам. Вот почему во время отдыха ваши мышцы не полностью расслаблены: они сохраняют некоторый мышечный тонус. Когда вы сгибаете руку в локте, ваша нервная система посылает больше импульсов бицепсу, заставляя его сжаться, и одновременно посылает меньше импульсов трицепсу, заставляя его расслабиться. Одна из причин такого снижения количества импульсов – то, что моторные нейроны, управляющие трицепсом, получают ингибирующий сигнал от синапсов.
…ингибирует возникновение пика… Точнее, различие между возбуждением и ингибированием определяется так называемым обратным потенциалом синапса и зависит от того, выше он или ниже порогового значения, при котором нейрон дает нервный импульс.
…еще один тип синапсов… Электрический синапс, или «узел разрыва», состоит из группы молекул, каждая из которых представляет собой крошечный туннель, соединяющий внутреннюю часть одного нейрона с внутренней частью другого.
…ряда других ограничений… Во многих других отношениях электрические синапсы не так сноровисты. Продолжительность электрических импульсов в синапсах невелика и является фиксированной величиной. Электрический ток обычно идет в обоих направлениях, хотя может более охотно течь в одном из них. Если двусторонность кажется вам совершеннее односторонности, можете считать электрические синапсы могущественнее химических. Однако двустороннюю коммуникацию между нейронами можно установить с помощью двух химических синапсов, по одному на каждое направление, тогда как электрические синапсы не способны на одностороннюю связь. Поэтому двусторонняя коммуникация сама по себе налагает ограничения. Известно, что электрические синапсы играют важную роль, когда совокупности нейронов требуется одновременно породить нервный импульс. Для такой синхронности как раз и нужна быстрая двусторонняя связь. Электрические синапсы дают лишь электрическое воздействие, тогда как химические синапсы могут еще и генерировать молекулярные сигналы в принимающем нейроне. Дополнительные стадии химической передачи сигнала могут замедлять его, однако с помощью других процессов сигнал может усиливаться и модулироваться.
Как же нам пересмотреть «голосовательную» модель с учетом ингибирования? О более простом типе воздействия ингибирования на нейронные пути можно и не упоминать: отдельный путь, содержащий смесь возбуждающих и ингибирующих синапсов, не способен передавать нервные импульсы, как бы сильны ни были синапсы.
…наложить вето на результат голосования множества возбуждающих синапсов. В 1943 году нейробиологи-теоретики Уоррен Мак-Каллок и Уолтер Питтс представили первую «голосовательную» модель нейрона. Модель МакКаллока – Питтса следовала принципу «Один синапс – один голос», но лишь для возбуждающих синапсов. Ингибирующему синапсу разрешалось обладать правом вето, позволяющим аннулировать результат волеизъявления множества возбуждающих синапсов. Можно показать, что модель Мак-Каллок – Питтса является частным случаем модели «неравноценного голосования»: в предложенной ими модели просто дается очень большая цена голосу ингибирующего синапса.
Возбуждающий нейрон предлагает другим нейронам только возбуждающие синапсы… Это следует из принципа Дейла, поскольку конкретный нейротрансмиттер обычно оказывает одно и то же электрическое воздействие на любой нейрон – либо всегда возбуждающее, либо всегда ингибирующее. (Знак, которым характеризуется электрический ток, зависит от молекулярных механизмов на принимающей стороне синаптической щели.)
Такое единообразие не сохраняется… Не распространяется оно и на силу синапсов. Нейрон может создавать сильный синапс с одним нейроном, а слабый – с другим.
…большинство нейронов – возбуждающие. В коре головного мозга примерно 80 % возбуждающих нейронов и около 20 % ингибирующих.
…усиливает его избирательность… О важности селективного пикообразования можно порассуждать и с иной точки зрения. Природа идет на множество ухищрений, чтобы воспрепятствовать взаимным помехам между «проводами». Зачем это делать, если из-за конвергенции и дивергенции (схождения и расхождения «ветвей») в каждом нейроне сигналы все равно смешиваются? Селективность необходима из-за того, что нейроны часто отказываются давать нервный импульс.