Теперь обратимся к самолету. Он держится на воздухе только при быстром поступательном движении, при чем он должен тратить большую работу: во-первых, на одоление силы тяжести, во-вторых, на борьбу с сопротивлением воздуха. В, общем, то и другое требует расхода от 30 до 300 сил на летающего человека.
Чем меньше подъемная сила аэроплана, тем меньше относительный расход энергии для полета. В общем, сносный аэроплан, даже для одного человека, требует 50–100 сил. Избежать этого расхода невозможно. Но маленькие аэропланы — не хозяйственны. Хозяйственный самолет должен иметь несколько человек, служащих и по крайней мере в пять раз больше пассажиров. Если, напр., будет пять служащих, то надо 25 платных пассажиров, а всего 30 летающих людей. Только тогда он будет иметь хоть некоторые удобства для путешествия и некоторую безопасность. Это потребует от самолета больших размеров и большого относительного расхода энергии.
Калужский старец
Понятно, что аэроплан может служить лишь для перевозки писем, дорогих грузов и людей, не стесняющихся расходом на дорогу.
Грузоподъемные самолеты еще в периоде своего развития. Оно достигнет еще своей высоты и некоторой степени экономности. Но и низший предел ее всегда будет высок. За то те, кому надо быстро переправиться через океан, пустыню, или совершить вообще длинный путь в короткое время, будут прибегать к аэроплану, (поднимающему несколько десятков человек и доставляющему своим пассажирам некоторые скромные удобства, однако далекие от комфорта на пароходе или будущем дирижабле.
Последний может двигаться медленнее аэроплана, пользоваться искусно воздушными течениями, иметь громадные размеры и тысячи людей в гондоле. Поэтому путешествие на дирижаблях будет гораздо прекраснее и дешевле, чем на самолетах.
Дирижабль будет служить для перевозки дешевых грузов и простецких пассажиров, которые не могут или не хотят делать больших расходов на путешествие или переселение.
Дирижабли еще более, чем аэропланы находятся в периоде своего развития и еще дальше от пределов своего совершенства.
Устройство дирижабля подобно устройству подводной лодки (субмарины). Тот же мотор, тот же гребной винт, та же борьба с устойчивостью продольной оси и положением относительно поверхности океана.
С одной стороны борьба эта для субмарины проще, с другой же, вследствие отсутствия воздуха, ослабления света и громадного внешнего давления воды, — та же борьба труднее.
На практике, т. е. в жизни, мы пока имеем дирижабли трех сортов: мягкие, жесткие и полужесткие.
У первых все части, кроме гондолы и мотора, сделаны из мягких материалов: прорезиненной ткани, веревок и проч. Парсеваль даже воздушный винт ухитрился сделать мягким. Строительство дирижаблей началось с такого их сорта. Причина — малые размеры первых аэростатов и требуемая для них весьма легкая оболочка.
Жесткие дирижабли устроены также, но они имеют твердую клетку, скелет иди корпус, обтянутый чем-то вроде брезента. Такие могли появиться только при сравнительно громадных размерах.
У полужестких воздушных кораблей каркас не полный. Большею частию, нижняя половина дирижабля, его основание имеет твердую решетчатую форму. Эти дирижабли средних размеров.
Последние две категории кораблей изобретены и введены в употребление позднее мягких.
Все эти системы в употреблении и имеют, так сказать, право гражданства.
Были попытки делать дирижабли, или хоть создавать проекты, иных систем. Но они пока не были удачны. Мы скажем о них далее.
Указанные три главных сорта кораблей имеют много общего.
1) Так, наружную их форму и объем стараются делать неизменными. Для достижения этого все дирижабли с каркасом и без него имеют внутри особые отделения с воздухом. Когда легкий газ, наполняющий оболочку корабля, расширяется, то часть воздуха из нее вытесняется наружу. При сжатии же газа тот же воздух устремляется внутрь дирижабля, дополняя его объем.
2) Мягкие части дирижабля сгораемы, а иногда и самый каркас, устроенный, напр., из дерева.
3) Все мягкие перегородки проницаемы для газов и воздуха. Каркас, конечно, как сквозная клетка, удержать газ не может.
4) Газы горючи. При смешении с воздухом они образуют взрывчатую смесь, подобную пороху. Негорючий гелий пока употребляется только для военных кораблей в Америке. Но он вдвое тяжелее водорода. Притом он не устраняет пожара ни снаружи, ни внутри оболочки.
Отсюда видно, что все современные дирижабли доступны для внутреннего и внешнего возгорания и представляют для пассажиров такую же опасность, как для человека, курящего папиросу и сидящего на бочке с порохом.
Наибольший успех имели жесткие дирижабли, притом особенной системы. Их каркас позволяет придавать им громадные размеры и такую же грузоподъемность. Они перелетали через океаны, обширные пустыни, целые материки и даже делали кругосветные рейсы. Но и маленькие мягкие дирижабли не вышли из употребления и имеют свои преимущества.
Опишем такой дирижабль, который считается последним реальным и наиболее совершенным продуктом дирижаблестроения.
Дирижабль имеет хорошую легко обтекаемую воздухом форму. Форма эта сохраняется очень сложным, дорого стоящим металлическим каркасом. Довольно взглянуть на иллюстрации цепеллиновских верфей со строящимся там каркасом, чтобы ужаснуться сложности и дороговизне дела.
Карас разделен проволочными сетками на 15–20 отделений, содержащих обыкновенные шары с гелием. Кроме того, там же помещаются мешки с горючим газом плотности воздуха (или меньше). И еще остается обширное пространство, занятое воздухом. Весь каркас обтянут одним или двумя параллельными слоями брезента.
Мы не говорим про гребные винты, моторы, рули, оперение и проч. Это у всех дирижаблей приблизительно одинаково.
Как же управляются подобные дирижабли? Управляемость мы разделим на: 1) отвесную (поднятие, опускание, сохранение высоты); 2) поступательную (горизонтальное движение вперед) и 3) осевую (горизонтальность оси или определенный небольшой ее наклон).
1. Отвесная управляемость.
Сжигание газообразного горючего в моторах не изменяет подъемную силу дирижабля и потому высота его от этого над уровнем океана не изменяется. Сжигание бензина или нефти в моторах облегчит его и заставит подняться, но потеря газа через просачивание может уравновесить этот дефект.
Однако, что вы сделаете, когда солнечные лучи нагреют оболочку (и газ) и дирижабль устремится в высь? Тут неизбежно выпускание дорогого газа. Также — если после этого небо покроется облаками, то дирижабль охладится и начнет падать. Как поддержать тогда его подъемную силу? Неизбежна потеря балласта. Он — мертвый груз и запасы его — большой минус. Сжигание бензина можно отчасти уравновешивать сгущением части продуктов горения в воду, что и применяется теперь. Со внезапными же нагреваниями и охлаждениями, при полуоблачной погоде, можно удачно бороться только через потерю газа и балласта.
Если равновесие соблюдено, то, наклонив немного дирижабль (во время его поступательного движения), можем таким способом опуститься или подняться на желаемую высоту. Это же изменяет его подъемную силу и значит как бы может служить для отвесной управляемости.
Но, к сожалению, как показывают расчеты, производимая таким путем подъемная сила очень ограничена и никак не может бороться с метеорологическими влияниями.
2. Поступательная управляемость вполне достигается, когда самостоятельная скорость корабля от работы моторов больше скорости ветра. А так как скорость последнего достигает значительной величины, то и мощность моторов дирижабля должна быть большей. Но во множестве случаев она может быть маленькой, напр., когда: 1) скорость ветра мала; 2) когда он попутный; 3) когда путь немного уклоняется от направления ветра.
Управляемость поступательная еще состоит из прямолинейности движения и желаемом изменении поступательной скорости. Прямолинейность обусловливается горизонтальностью продольной оси или желаемым неизменным ее наклоном. Скорость же движения, кроме этого, — переменною и желаемою работою моторов. Повидимому, современные дирижабли обладают достаточно этим свойством, иначе приземление было бы затруднительным: при впуске и поднятии, первое время самостоятельная скорость дирижабля должна быть равна и противоположна (по направлению) скорости ветра. Только тогда моменты начала и конца путешествия благополучны, ибо равнодействующее движение будет отвесным (столбом).
3. Направление продольной оси корабля, благодаря множеству перегородок, горизонтальному рулю (высоты), оперению и перемещению груза в гондоле, кажется, сохраняется достаточно. Однако мы слышали жалобы д-ра Брунса, одного из цепеллиновских капитанов, на сильные наклоны воздушных кораблей. С наклонами, производимыми циклонами, цепеллиновские средства борьбы нельзя считать достаточными. От неодолимых наклонов может весьма пострадать скорость поступательного движения корабля и даже самая его целость.
Ради сохранения легкого газа, его резервуары, т. е. шары делаются из бычачьих кишек. Сотни тысяч их искусно склеиваются с тканью и так составляются мало проницаемые сферические мешки.
Недостатки описанного дирижабля еще в следующем:
1. Дороговизна и трудность работы на высотах при постройке. Необходимость при этом дорогой верфи.
2. Чрезвычайная пожарная опасность. Мягкие ткани шаров, то сжимаясь, то расширяясь, трутся друг о друга и могут дать электрическую искру, зажигающую газообразное горючее. Огневые моторы, бензин, или нефть, неосторожность команды или пассажиров также грозят гибелью от пожара.
3. Воздушные отделения увеличивают объем дирижабля и сопротивление воздуха при его движении. Они также способствуют внутреннему пожару.
4. Гелий вдвое тяжелее водорода. В Европе его нет и он не доступен по своей высокой ценности. Притом он нисколько не устраняет пожарной опасности в виду присутствия в оболочке запасов газообразного горючего, воздуха и органических оболочек.