Конструкции, или почему не ломаются вещи — страница 11 из 19

Глава 8

Стены, арки и плотины, или башни, уходящие в облака, и устойчивость каменной кладки

Что б ты построить из кубиков мог?

Замки и виллы, церковь и док.

Детский цветник стихов

Р. Л. Стивенсон

Как мы уже убедились, простых смертных, не наделенных сверхъестественнымразумом Природы, на пути создания конструкций, подвергающихся растяжениям,подстерегают трудности, осложнения и хитроумные ловушки. Особенно это относитсяк случаям, когда мы хотим создать конструкцию из нескольких кусков материалаи сталкиваемся с проблемой прочности соединений. Не случайно наши предкистарались по возможности избегать конструкций, подвергающихся растяжениям,и стремились использовать такие конструкции, в которых всюду действуюттолько сжимающие нагрузки.

Этому требованию лучше всего удовлетворяет каменная кладка. Тот замечательныйуспех, который во все времена сопутствовал ее применению, обязан двум факторам.Первый вполне очевиден - это возможность избежать растягивающих напряжений,особенно в соединениях. Второй менее очевиден - это удивительная совместимостьзадач конструирования больших строений, сложенных из камней, с ограниченностьювозможностей "донаучного" подхода.

Из всех конструкций самых различных видов только каменные сооружениядопускают слепое копирование традиционных пропорций, которой не ведет автоматическик беде. Именно поэтому на протяжении всей истории строения из камня далекопревосходили по своим размерам и внушительности все остальное, что былосоздано руками человека. Желание строить теряющиеся в облаках башни и величественныехрамы уходит своими корнями в глубины истории и даже в предысторию человечества.Эпиграфом к началу этой книги послужили строки из книги Бытие о Вавилонскойбашне. Напомним, что там говорилось о намерении построить "башню, высотоюдо небес". Впрочем, я думаю, ни один богослов не задавался вопросом, какойвысоты можно было бы ее построить на самом деле.

Почти вся нагрузка, приходящаяся на стены такой башни, определяласьбы их собственным весом, и можно вычислить то напряжение сжатия, котороесоздавала бы у основания башни действующая вертикально вниз статическаянагрузка каменной кладки. В этом случае предельной явилась бы та минимальнаявысота башни, при которой ее кирпичи были бы раздавлены приходящимся наних весом.

Плотность камня и кирпича составляет около 2500 кг/м3, а их прочность насжатие, вообще говоря, несколько больше 5 кгс/мм2 или 50МН/м2.

Элементарный расчет показывает, что высоту башни с вертикальными стенамиможно довести до 2 км, и кирпичи в ее основании все еще не будут раздавлены.Башня же, имеющая суживающиеся кверху стены, могла бы быть значительновыше; примерно такой принцип избрала Природа для горообразования. ВысотаДжомолунгмы около 9 км, и пока не похоже, чтобы она собиралась обвалиться.Так что суживающаяся кверху башня простой формы с широким основанием вполнемогла бы быть доведена до такой высоты, на которой людям Сеннаара сталобы трудно дышать из-за нехватки кислорода, прежде чем статическая нагрузкаее стен раздавила бы кирпичи в основании.

Хотя в такого рода вычислениях не содержится ничего принципиально неправильного,в действительности высота всех построенных когда-либо башен и близко недоходила до теоретически предельной. Так, самое высокое из существующихсегодня зданий, Нью-йоркский центр международной торговли, лишь на 400м возвышается над землей, да и это для нас не самый удачный пример, поскольку,подобно всем небоскребам, оно построено из стали. Пирамида Хеопса и шпилисамых высоких кафедральных соборов достигают немногим более 150 м, и лишьнекоторые из огромного множества каменных строений достигают хотя бы половиныэтой высоты, подавляющее же большинство зданий намного ниже.

Поэтому обычно напряжения сжатия, возникающие в каменной кладке поддействием ее собственного веса, весьма малы. Как правило, они редко превышают0,01 прочности камня на сжатие и на практике не накладывают ограниченийна высоту зданий или на их прочность. Тем не менее известно, что, начинаяс библейской Силоамской башни, которая, не будучи особенно высокой, упалаи убила 18 человек, они все же время от времени неожиданно рушатся (несмотряна уверенность архитекторов и строителей в их прочности). Такое происходилово все времена, а иногда происходит и сегодня. И под тяжестью каменнойкладки (а она немалая) нередко гибнут люди.

Но если стены рушатся не под давлением сжимающих напряжений, так поддействием чего? Ответить на этот вопрос помогают детские игры. Все мы вдетстве строили башни из кубиков, довольно неустойчивым образом поставленныхдруг на друга. Достигнув некоторой высоты, такое сооружение неизменно разваливалось.Даже дети понимают, хотя и не могут выразить этого в научных терминах,что виной тому отнюдь не сжимающие напряжения. Эти напряжения на деле ничтожномалы, а башня опрокидывается потому, что ее стены не строго вертикальны.Другими словами, речь здесь должна идти не о недостатке прочности, а онедостатке устойчивости. Хотя разница между этими двумя понятиями очевиднамаленьким детям, она не всегда ясна строителям и архитекторам и тем болееисторикам искусства, которые пишут о кафедральных соборах и подобных имсооружениях.

Линии давлений и устойчивость стен

Внушает трепет и благоговенье

Весь облик этой каменной громады.

Уходят в небо древние колонны,

Главами мраморными подпирая

Изогнутый дугою тяжкий свод.

Недвижно все, покоем дышит камень

И, ужасая, привлекает взор.

Утренний мост

Уильям Конгрив

Во времена королевы Анны культурная жизнь Англии не могла быть особенноразрозненной и можно быть почти уверенным в том, что Конгрив (1670-1729)имел беседы и делил застолье с Ванбруфом, автором многочисленных пьес исоздателем Бленхеймского дворца, а также с самим Кристофером Реном. Дляэтих людей в общих чертах было совершенно ясно, что устойчивость зданийопределяет не столько прочность камня и скрепляющего "раствора", сколькораспределение их веса.

Однако одно дело понимать это и совсем другое - конкретно представлятьсебе все в деталях и уметь определить заранее, будет ли здание безопаснымили нет. Чтобы достичь научного понимания того, как ведет себя каменнаякладка, ее необходимо рассматривать как упругий материал, то есть следуетучесть то обстоятельство, что материал камня деформируется под действиемнагрузки и что он подчиняется закону Гука. Полезно также, хотя это и неабсолютно необходимо, использовать понятия напряжения и деформации.

На первый взгляд все же, конечно, кажется невероятным, что твердый кирпичи камень могут деформироваться в сколько-нибудь заметной степени под действиемнагрузки, создаваемой зданием. И в самом деле, еще столетие после Гукак этой мысли не могли привыкнуть даже строители, архитекторы и инженеры.Они упорно игнорировали закон Гука и считали каменную кладку абсолютножесткой. В результате их расчеты оказывались неверными и здания иногдарушились.

Однако в действительности модуль Юнга для кирпича и камня не очень велик (вэтом можно убедиться, посмотрев на изогнутые колонны собора в Солсбери на рис.4), а потому упругие перемещения каменной кладки отнюдь не так малы, как можнобыло бы предполагать. Даже стены обычного небольшого дома сжаты в вертикальномнаправлении своим собственным весом примерно на миллиметр. В больших зданияхэти перемещения, естественно, значительно больше. А когда вам кажется, что домсотрясается под порывами сильного ветра, это не так далеко от истины. Верхушканебоскреба Эмпайр стэйт билдинг раскачивается при сильном ветре более чем на0,5 м[57].

Современный расчет каменной кладки основан на простом законе Гука, атакже на следующих четырех допущениях, которые оказываются справедливымина практике:

1) сжимающие напряжения столь малы, что материал не может разрушатьсяза счет сжатия (мы уже обсуждали этот вопрос);

2) благодаря использованию строительного раствора или цемента соединениявыполнены достаточно тщательно, так что силы сжатия действуют по всей площадисоединения, а не в нескольких выступающих точках;

3) трение в соединениях столь велико, что не может произойти разрушенияконструкции вследствие взаимного проскальзывания кирпичей или камней (насамом деле никаких проскальзываний до разрушения конструкции не происходит);

4) соединения не обладают сколько-нибудь заметной прочностью на растяжение;даже если случайным образом раствор обладает некоторой прочностью на разрыв,на нее нельзя полагаться и ею следует пренебречь.

Таким образом, назначение строительного раствора состоит не в том, чтобы"склеивать" кирпичи или камни, а в том, чтобы сжимающие нагрузки передавалисьчерез соединение более равномерно.

Насколько мне известно. Юнг был первым, кто стал учитывать упругие деформациикаменной кладки. Он рассмотрел, что происходит в прямоугольном блоке каменнойкладки, скажем в участке стены, когда он подвергается действию вертикальнойсжимающей нагрузки Р. Мы приведем его рассуждения в упрощенной форме, переведяих для этого на язык напряжений и деформаций, которого во времена Юнга,конечно, не существовало.

До тех пор пока нагрузка P действует вертикально внизв плоскости симметрии, то есть посредине стены, кладка будет сжата равномернои, согласно Гуку, соответствующее распределение сжимающих напряжений потолщине стены также будет равномерным (рис. 58).

Рис. 58. Нагрузка P действует в плоскости симметрии стены.

Рис. 59. Нагрузка P действует в пределах "средней трети" стены.

Рис. 60. Нагрузка P действует на краю "средней трети" соединения AB.

Рис. 61. Нагрузка P действует вне "средней трети" соединения AB.

Предположим теперь, что вертикальная нагрузка P немногосместилась в сторону и действует не точно в плоскости симметрии стены.В этом случае сжимающее напряжение не будет постоянным вдоль ее сечения:для того чтобы в точности уравновесить действующую нагрузку, оно должнобыть с одной стороны больше, чем с другой. Юнг показал, что если материалподчиняется закону Гука, то напряжения по толщине стены будут изменятьсялинейно и распределение напряжений будет выглядеть так, как показано нарис. 59.

Пока что соединению, которое мы видим на рис. 59, ничто не угрожает:по всему сечению АВ действуют только сжимающие напряжения.Однако если приложение нагрузки сместится еще дальше от середины стены- на границу так называемой "средней трети" стены, то возникнет ситуация,изображенная на рис. 60, в которой распределение напряженийимеет треугольную форму и сжимающее напряжение на одном из краев соединенияобращается в нуль.

Рис. 62. Вот что происходит, если возникает ситуация, изображенная на рис.61. В соединении возникает трещина ВС, и вся нагрузка теперь распределенапо площади, соответствующей отрезку АС, - эффективная толщина стеныуменьшается.

Рис. 63. Если линия действия нагрузки проходит за пределами отрезка АВ,то стена будет поворачиваться вокруг точки A,- опрокинется и упадет.

Само по себе это пока еще не опасно, но для вдумчивого человека вполнеочевидно, что при этом что-то готово вот-вот произойти. И действительно,если нагрузка сместится еще немного к краю, "что-то" и в самом деле произойдет- возникнет ситуация, изображенная на рис. 61.

Сжимающее напряжение вблизи одной из поверхностей стены теперь сменилосьна растягивающее. Здесь уже нельзя быть уверенным в том, что раствор сможетвыдержать растягивающее напряжение. Обычно он и в самом деле не выдерживаети происходит то, чего и следовало ожидать, - в соединении возникает трещина.Конечно, если стена трескается, это плохо и этого лучше не допускать, однакотакая трещина еще не означает, что стена непременно и без промедления рухнет.Весьма вероятно, что края трещины несколько разойдутся, но стена останетсястоять, покоясь на той части соединения, где контакт не нарушен (рис. 62).

Но все это не сулит спокойной жизни, и наступит день, когда линия действиясилы окажется за пределами стены, и нетрудно догадаться, что произойдет.В стене не может возникнуть необходимых растягивающих напряжений, ее частьначнет свисать над основанием, и тогда стена опрокинется и упадет (рис.63).

В 1802 г., когда Юнг пришел к этим заключениям, он был двадцатидевятилетнимчеловеком, начинающим приобретать известность и только что получившим кафедрунатуральной философии в Королевском институте в Лондоне. Его коллегой и вопределенном смысле соперником был Гемфри Дэви[58], который втом же году, в невероятно молодом возрасте - ему было 24 года, - стал там жепрофессором химии.

Как и сегодня, в те времена существовала традиция, согласно которойпрофессора Королевского института читали публичные лекции. Правда, в товремя эти лекции по своему характеру были близки к сегодняшним выступлениямпо телевидению и для института служили источником денежных средств, а такжесоздавали ему паблисити.

Юнг отнесся к своей просветительской миссии весьма серьезно и, полныйэнтузиазма, затеял серию лекций об упругом поведении разного рода конструкций,в том числе стен и арок, которым он посвятил свои последние исследования.

Публика на этих собраниях на Албемарл-стрит была фешенебельной и, какговорят, состояла главным образом из "глупых женщин и философствующихдилетантов". Юнг отнюдь не пренебрег женской частью аудитории, заметивв своей вводной лекции:

"Значительную часть моей аудитории - и я горю желанием донестидо нее эти лекции - составляют лица того пола, который, согласно традициямцивилизованного общества, в известной степени избавлен от тяжелых обязанностей,поглощающих время и внимание лиц противоположного пола. Те многие часыдосуга, которыми располагают женщины высших слоев общества, можно посвятитьсовершенствованию ума и приобретению знаний, и это несомненно принеслобы большее удовлетворение, чем развлечения, придуманные лишь для того,чтобы немного скрасить однообразие ничем не занятого времени".

Однако фортуна не всегда благосклонна к сеятелям знаний, и можно подозревать,что некоторые из представительниц прекрасного пола все же сбежали с этихлекций, отдав предпочтение однообразию "ничем не занятого времени".Так или иначе, но Дэви, демонстрировавший на своих лекциях необыкновеннозахватывающие опыты с "новой электрической жидкостью" и яркие химическиеэксперименты, был, как мы бы сейчас сказали, прямо-таки создан для экрана.Этот энергичный молодой человек имел к тому же весьма привлекательную внешность,так что молодые дамы стекались на его лекции по причинам, которые нельзяназвать вполне академическими, Одна из них, говорят, заметила, что "этиглаза созданы не только для того, чтобы сосредоточенно разглядывать пробирки".В итоге кассовый успех лекций Дэви превзошел все ожидания, и администрациярезюмировала: "Хотя д-р Юнг, чьи глубокие познания в предмете, которыйон предложил своим слушателям, не вызывают сомнений, читал свои лекциитой же аудитории, что и Дэви, число его слушателей уменьшалось раз от раза,чего нельзя объяснить ничем иным, кроме слишком сухой и назидательной манерыизложения".

Провал такого рода не много бы значил, вызови работа Юнга интерес и поддержкуинженеров-практиков. Однако вождем и даже кумиром тогдашних инженеров был ТомасТелфорд (1757-1834), взгляды которого, как мы уже упоминали, отличалисьпрагматичностью и отвергали теорию. Все это способствовало тому, чтобы Юнгпочти немедленно отказался от кафедры и вернулся к медицинскойпрактике[59].

Развитие теории упругости на много лет переместилось во Францию, гдекак раз в это время Наполеон активно поощрял исследования в области конструкций.

Учение об упругом сжатии, "средней трети" и неустойчивости, котороевызывало такую скуку у фешенебельных дам на лекциях Юнга, в действительностисодержит практически все, что нужно знать о поведении стыков в каменнойкладке, при условии, что нам известна также линия действия силы веса. Другимисловами, мы должны знать, на каком расстоянии от серединной плоскости стенына самом деле действует нагрузка.

Рис. 64. В простейшем случае, когда имеется симметрия, "линия давлений",проходит через середину стены.

Здесь как раз уместно ввести понятие "линии давлений", которая определяетсякак линия, проходящая по стене здания от ее верхней точки до основанияи пересекающая все стыки в тех точках, где приложена равнодействующая вертикальногодавления. Линия давлений - это французское изобретение, и, по-видимому,первым ее рассматривал Кулон (1736-1806).

Для стены, колонны или опоры простых симметричных форм, таких, как показаны нарис. 64, линия давлений проходит, очевидно, через середину, и здесь нет никакихтрудностей. Однако если речь идет о сколько-нибудь более сложном сооружении, тотогда скорее всего имеется хотя бы одна наклонная сила, возникающая из-забокового давления крыши, арки, сводов или других конструктивных элементов. Втаких случаях линия давлений уже не проходит точно через середину стены, асмещается на одну сторону и часто принимает искривленную форму, как показано нарис. 65[60].

Рис. 65. В результате действия наклонной нагрузки линия давлений отклоняетсяот плоскости симметрии стены.

Рис. 66. Действие на стену дополнительной вертикальной нагрузки уменьшаетотклонение линии давлений от середины стены.

Если, проводя линию давлений, мы обнаружим, что имеется опасность того,что она в какой-либо точке достигнет поверхности стены, то следует призадуматься,и крепко, поскольку у сооружения, спроектированного таким образом, великишансы рухнуть.

Один из способов исправить положение (и, вероятно, это один из наиболееэффективных способов) состоит в том, чтобы на верхнюю часть стены добавитьдополнительный вес. Тогда дело обернется таким образом, как это показанона рис. 66. В противоположность тому, что можно было бы предположить, этотдополнительный вес способствует большей, а не меньшей, устойчивости стеныи возвращает "заблудшую" линию давлений более или менее туда, где ей следуетнаходиться.

Требуемый дополнительный вес можно создать, просто надстроив стену больше,чем в действительности необходимо; годятся также такие вещи, как тяжелыебаллюстрады и парапеты. Всегда могут выручить и поставленные в ряд статуи(рис. 67), если, конечно, это совместимо с назначением здания и позволяютсредства! С конструкционной точки зрения бывает обоснованным использованиебашенок и статуй в готических церквях и соборах. Они возвышаются там словнонасмешка над приверженцами функциональности и унылыми ревнителями "эффективности".

Обычно считается абсолютно необходимым, чтобы линия давлений[61] проходила в пределах "средней трети" стены, посколькуиначе при появлении трещины она может обвалиться.

Рис. 67. Требуемую дополнительную вертикальную нагрузку могут создаватьбашенки, статуи и т. п.

Такой осторожный подход правилен, он служит безопасности, и его необходимопридерживаться, но я боюсь, что в наш век вседозволенности это делается редко.Посмотрите на стену современного жилого дома или нового учебного заведения, ивы увидите массу трещин, а там, где трещины, непременно действовали когда-торастягивающие напряжения. Правда, хотя эти трещины вредят штукатурке ивнутренней отделке здания[62], на деле ониредко представляют какую-либо опасность для несущей конструкции. Основнымусловием надежности каменной кладки является то, чтобы линия давлений нигде иникогда не подходила к поверхности стены, или колонны.

Плотины

Подобно стенам, каменные плотины обычно разрушаются не из-за недостаткапрочности, а из-за недостатка устойчивости - они, как и стены, могут опрокидываться.Боковое давление на плотину со стороны запруженной воды, как правило, сравнимос весом каменной кладки плотины. Поэтому положения активной линии давлениймогут резко меняться в зависимости от уровня запруженной воды. Для плотинв отличие от обычных зданий недопустимы никакие вольности в обращении справилом "средней трети". Их каменная кладка ни в коем случае не должнасодержать трещин, особенно со стороны, обращенной к запруживаемой воде.Присутствие трещины позволило бы воде под давлением войти внутрь конструкции,что повлекло бы за собой два нежелательных последствия. Во-первых, водаповреждала бы каменную кладку. В больших плотинах для предотвращения всякогопросачивания воды в тело плотин обычно предусматривается специальный дренаж.Во-вторых, давление воды внутри трещины создавало бы направленную вверхсилу (ее величина на глубине 30 м составляет около 0,5 МН/м2), котораяв критической ситуации опрокидывает дамбу.

Так, разрушение британской авиацией плотин Мопе и Эдер в 1943 г. происходилов две стадии, разделенные коротким промежутком времени. Вначале взорвалисьбомбы, сброшенные Барнсом Уоллисом возле плотины со стороны верхнего бьефа(прежде чем взорваться, они затонули). Взрывы бомб образовали в теле плотиныглубокие трещины, а уже опрокидывание плотин произошло через некоторыйпромежуток времени и было вызвано проникновением в эти трещины воды, давлениекоторой было достаточно велико. Те, кто читал отчет об этих операциях,помнят, что между взрывами бомб и видимым разрушением плотины была заметнаяпауза. Разрушения эти нанесли огромный ущерб районам Рура.

Разрушение плотины в мирное время - страшный сон для инженера. Дажеесли плотина сделана из неармированного бетона, а не из камня, было бынеразумным положиться на сопротивление материала плотины растягивающимнагрузкам. Поэтому во всех плотинах, построенных из неармированных материалов,линия давлений, смещаясь в сторону верхнего бьефа при незаполненном водохранилищеи в противоположную сторону, когда водохранилище заполнено до предела,не должна выходить из "средней трети", и не лишне при этом иметь еще некоторыйзапас. Чтобы удовлетворить этим требованиям, обычно строят суживающиесякверху плотины асимметричной формы. Эта форма хорошо известна, вы видитеее на рис. 68.

Рис. 68. Каменная плотина без армирования.

Рис. 69. Армированная плотина.

Однако стоимость удержания воды с помощью плотины весьма высока, и инженерыпостоянно ищут более дешевые способы сооружения плотин. Заметно снизитьобщий вес плотины и стоимость цемента позволяет применение бетона, армированногостальными прутьями, в особенности предварительно натянутыми, Однако еслиармирующие прутья не закреплены в твердой породе под основанием плотины,имеется реальная опасность, что плотина будет опрокинута как целое, вместес арматурой и всем прочим.

Одно из возможных конструктивных решений показано на рис. 69. Здесьпростые вертикальные стальные стягивающие стержни закреплены в твердойпороде, лежащей в основании плотины, и проходят через бетон до ее верха,где они натягиваются с помощью устройства типа домкрата. Очевидно, чтоэти прутья работают так же, как и фигуры святых и башенки на кафедральныхсоборах. Любую обычную тяжелую каменную кладку также можно рассматриватькак "предварительно напряженную" ее собственным весом. Тяжелые статуи,поставленные в ряд по верхней кромке плотины, несомненно были бы эффективныи, возможно, не так уж плохо и выглядели бы, но, боюсь, они оказались быкуда как дороже стальных стержней.

Арки

Хотя арки не столь стары, как каменная кладка, тем не менее они тожеведут свое начало из глубокой древности. Имеются свидетельства, восходящиепримерно к 3600 г. до н.э., о существовании вполне совершенных арок изкирпича как в Египте, так и в Месопотамии. Арки из камня, по-видимому,имели отдельную и, возможно. независимую линию развития, возникающую изидеи об устройстве выступов; такие выступы, образованные выдававшимисявсе дальше последовательными рядами каменной кладки, строились навстречудруг другу, пока не сходились. Своды помещений (рис. 70), над которымивозвышаются крепостные стены микенского города Тиринфа, - уже тогда, когдаими восхищался Гомер, они были старыми, - построены именно таким образом.Боковые ворота в этих громадных стенах (рис. 71) можно рассматривать какпример дальнейшего развития техники устройства выступов. Все это, вероятно,было построено ранее 1800 г. до н. э.

Рис. 70. Своды, образуемые посредством выступовкаменной кладки. Тиринф, приблизительно 1800 г. до н. э.

Рис. 71. Боковые ворота в крепостных стенах Тиринфа.

Однако способ устройства арок с помощью серии выступов, подобный примененномупри строительстве ворот в Тиринфе, довольнопримитивен[63]. Арки скоро развились в конструкцию, вкоторой кирпичи или камни имеют слегка клинообразную форму, такие камни носятназвание клинчатых. Детали обычной арки показаны на рис. 72.

Клинчатый камень на вершине, или шелыге, арки или свода называется замковымкамнем, и иногда его делают большим, чем остальные. Хотя поэты, политикии представители гуманитарных наук склонны приписывать замковому камню особыесвойства, употребляя его название в переносном смысле, в действительностизамковый камень, если и имеет какие-либо отличия от других камней, то толькодекоративного характера.

Рис. 72. Элементы конструкции арки.

Назначение арочной конструкции состоит в том, чтобы выдерживать нагрузки,которые действуют на нее сверху вниз, преобразуя их в боковое давление,действующее вдоль арочного кольца и сжимающее по бокам клинчатые камни.Последние, конечно, в свою очередь давят на пяту арки. Как все это происходит,можно понять из рис. 73.

Кольцо арки, образованное кладкой из клинчатых камней, очень похожена искривленную стену, и для нее также можно построить линию давлений,указывающую линии действия равнодействующих сил, как это делалось вышедля обычных стен. В данном случае линия давлений должна искривляться, болееили менее повторяя форму кольца арки. О линиях давлений в арках мы поговоримв следующей главе, пока же отметим сам факт существования линии давлений.Как и в случае стены, здесь также можно считать, что клинчатые камни немогут проскальзывать относительно друг друга и что соединения не способнывыдерживать растягивающих напряжений.

Рис. 73. Распределение нагрузок в арке. Арка принимает на себя вертикальныенагрузки и преобразует их в боковые давления, которые действуют вдоль арочногокольца. Им оказывает противодействие пята арки.

Стыки между клинчатыми камнями ведут себя примерно так же, как и соединенияв обычной кладке. Если линия давлений паче чаяния выйдет за пределы "среднейтрети", то появится трещина. Если же линия давлений сдвинется к поверхностикольца арки, то образуется "шарнир". Но что радикально отличает арку оттривиальной стены, так это то, что, в то время как в подобной ситуациистена бы рухнула, с аркой этого не происходит. Из рис. 74 видно, что варке может возникнуть до трех шарниров, и при этом не происходит ничегострашного. В действительности в конструкциях многих современных мостовпредусмотрены три шарнира, которые воспринимают тепловые расширения.

Чтобы мост обвалился, ему требуется четыре шарнира, тогда арка оказываетсяцепью из трех шарнирно связанных звеньев - механизмом, имеющим ту степеньсвободы, которая позволяет ему "складываться", то есть разрушаться (рис.75). Кстати, поэтому, если вы хотите разрушить мост - из добрых или злыхпобуждений, - то взрывчатку лучше всего подложить в месте, отстоящем примернона треть пролета арки. Для того чтобы добраться до верхней поверхностиарки, обычно необходимо сначала сделать подкоп со стороны проезжей частимоста. Но земляные работы всегда требуют времени, вот почему так частосрывались планы взорвать мост вслед за отступающей армией.

Рис. 74. Арка с тремя шарнирными точками.

Рис. 75. Появление четвертого шарнира влечет за собой разрушение арки.

Все это свидетельствует об исключительной устойчивости арок и о том, что они неслишком чувствительны к смещениям в основаниях. В то время как смещения вфундаменте стены могут вызвать обвал[64],смещения в основании арки вызовут в ней только перекосы, которые для арокдовольно обычны.

Так, мост Клэр-на-задах в Кембридже весьма заметно изогнут посрединеиз-за смещений в основаниях арки (рис. 76). Это произошло уже давно, итем не менее мост абсолютно безопасен.

Рис. 76. Мост Клэр-на-задах в Кембридже. Смещения в основаниях привели кперекосу арки, что совершенно не повлияло на безопасность моста.

Точно так же арки очень хорошо выдерживают землетрясения и такого роданапасти, как современные потоки транспорта.

Так что не удивительно, что наши предки часто были более чем приверженык аркам: арка может устоять, даже если вы серьезно ошиблись в вычисленияхпри ее проектировании (или вообще обошлись без всяких вычислений) и вдобавокрешили строить все сооружение на болоте. Последнее на самом деле случилосьс несколькими английскими кафедральными соборами.

Следует заметить, что среди развалин чаще всего наиболее сохранившимисяоказываются арки. Отчасти это связано с присущей им устойчивостью, хотяне исключено и то, что клинчатые камни арок меньше интересовали окрестныхкрестьян, чем прямоугольные камни стен. (Последним объясняется и сохранностькруглых колонн на развалинах греческих храмов.)

Добиться того, чтобы линия давлений проходила заведомо внутри стеныили арки, как правило, легче в случае толстостенной кладки. Но сплошнойкирпич и каменные работы очень дороги. Чтобы увеличить толщину стен безбольших затрат, римляне стали использовать монолитный бетон. Он представлялсобой смесь вулканического туфа (pulvis puteolanis), весьма распространенногов Италии, с известью и добавками песка и гравия.

Если стены и арки делать более толстыми, они становятся более устойчивымии нет нужды увеличивать их вес. Но чем легче материал, требующий транспортировкии обработки, тем меньше, по-видимому, будет стоимость конструкции. Витрувий,выдающийся ученый древности (расцвет его творчества приходится на 20-егоды до н.э.), известный своими трудами по архитектуре и баллистике, свидетельствуето том, что в его время легковесный бетон нередко получали, добавляя порошокпемзы. Величественный Софийский собор в Константинополе (528 г.) построенименно из такого материала.

Уменьшение веса и стоимости бетона может быть достигнуто также и путемзаполнения цементной массы самыми разными сосудами. В древнем мире в виноделиии виноторговле использовались амфоры. Эти большие глиняные сосуды скапливалисьв огромных количествах. Очевидно, само собою напросилось решение бросать их вбетон. Это обнаружилось во многих поздних римских постройках. В частности,имеются свидетельства, что из такого рода "тары" были сделаны стены прекрасныхранневизантийских церквей в Равенне[65].

Масштаб, пропорции и надежность

Хотя, как утверждают, одни конструкции поддерживают силы небесные, адругие не разваливаются благодаря краске или ржавчине, проектировщик, еслион сознает свою ответственность, всегда стремится получить объективныегарантии прочности и устойчивости того, что он предлагает строить. Еслион не в состоянии произвести соответствующие расчеты на современном уровне,тогда, очевидно, необходимо либо сделать модель конструкции, либо определитьее размеры, увеличивая в определенном масштабе размеры какого-то уже существующегообразца, который оказался удачным.

Именно такими методами пользовались вплоть до самого недавнего времени.Возможно, к ним прибегают еще и сейчас. Но модели хороши лишь тогда, когдамы хотим посмотреть, как будет выглядеть вещь, а для предсказания прочностиэтот метод слишком ненадежен. Дело в том, что вес конструкции изменяетсяпропорционально кубу ее размеров. Так, если мы увеличим все размеры вдвое,вес возрастет в 8 раз. Площади же поперечных сечений тех или иных элементовконструкции, которые должны выдерживать нагрузку, изменяются пропорциональноквадрату размеров конструкции, и при увеличении всех размеров вдвое площадивсех поперечных сечений увеличатся только вчетверо. Поэтому с увеличениемразмеров напряжения растут линейно. Это означает, что если, например, мывдвое увеличили все размеры, то получили и удвоенные напряжения со всемивытекающими отсюда последствиями.

Прочность конструкции, которая может развалиться вследствие разрушенияматериала, нельзя предсказать, наблюдая лишь поведение моделей или применяяоперацию изменения масштаба к уже существующим образцам.

Это правило, установленное Галилеем, известно как "закон двух третей";оно является веским основанием для применения современных методов расчетапри проектировании автомобилей, кораблей, самолетов, станков. Возможно,именно поэтому всех этих конструкций до недавнего времени и не существовало,по крайней мере в их современной форме. Однако при создании больших каменныхсооружений мы можем не обращать внимания на закон двух третей, поскольку,как уже говорилось, здания обычно рушатся вовсе не из-за разрушения материалапри сжатии. Напряжения в каменной кладке столь малы, что мы можем позволитьсебе практически неограниченно увеличивать размеры сооружений. Однако вотличие от большинства других конструкций здания разрушаются потому, чтоих стены теряют устойчивость и опрокидываются, а устойчивость при любыхразмерах может быть предсказана путем исследования модели. В принципе устойчивостьздания сродни устойчивости весов или безмена (рис. 77).

Рис. 77. Устойчивость здания подобна устойчивостивесов, на нее не влияет изменение масштаба.

Опрокидывающие моменты, действующие на каждую из сторон такого устройства,с изменением размеров будут изменяться как их четвертая степень, и всеустройство будет по-прежнему находиться в равновесии. Таким образом, еслине заваливается маленькое здание, можно не беспокоиться и об устойчивостиего копии, если она увеличена в соответствующем масштабе; именно этот фактлежит в основе "таинств" средневековых строителей, которые сводятся к наборуопределенных правил и пропорций. Известно, что эти строители использовалисделанные из гипса или сложенные из камня модели, порою их высота достигала18 м. Такая методика, как правило, оказывалась плодотворной даже в случаяхчрезвычайно сложных конструкций, подобных Реймскому кафедральному собору(рис. 78).

Рис. 78. Контрфорсы Реймского собора.

В классической греческой архитектуре арки, как правило, не встречаются,им предпочитали каменные балки или перемычки. Растягивающие напряженияв этих балках, или архитравах, были довольно велики и нередко приближалиськ предельным. Многие из архитравов треснули еще в древние времена. С этимсвязано армирование мраморных балок железом, например в Пропилеях. Дорическиехрамы не обваливались благодаря тому, что их короткие и высокие в сечениикаменные балки, треснув, превращались в арки (рис. 79 и 80).

Рис. 79. Короткая каменная перемычка (архитрав) под действием растягивающихнапряжений, треснув, превращается и арку с тремя шарнирными точками ипродолжает держать нагрузку.

Для греческой трабейской[66] архитектурытребовались очень большие каменные блоки. По мере того как цивилизацияприходила в упадок, сложнее становилось перевозить большие грузы, возможно,именно это послужило одной из причин пристрастия средневековых строителей кготическим аркам и сводам, которые можно было строить из камней совсем малогоразмера.

Еще два столетия назад Джон Соун в своих лекциях по архитектуре отметил, что,несмотря на трудности, связанные с применением каменных балок, сооружениядревних часто имели гигантские размеры, намного превосходившие современные емуздания. Так, Парфенон, например, значительно больше собора св.Мартина-на-полях[67]. Тем не менее Парфенон, имея размеры 69 на 30м, невелик по сравнению с построенным Адрианом храмом Зевса Олимпийского (138г.), размеры которого составляют 108 на 52 м, - он занял бы большую частьТрафальгарской площади. Но и этот храм кажется меньше, чем он есть на самомделе, на фоне находящихся поблизости стен Акрополя (рис. 80). Точно так жевпечатляют размеры каменной кладки римских мостов и акведуков.

Рис. 80. Развалины храма Зевса Олимпийского в Афинах (видна трещина наархитраве).

К разрушению этих античных конструкций люди приложили руку в значительнобольшей степени, чем природа, но некоторые из них хорошо сохранились идо наших дней. Однако в постройке этих сооружений древние в большей илименьшей степени следовали известным образцам. Если почему-либо этого неделалось, сооружения нередко оказывались "плохо склеенными". Корабли иповозки древних представляются нам сейчас крошечными и непрочными, а зданияновой и необычной формы, подобные римским инсулам, которые представлялисобой отдельно стоящие многоквартирные дома, к прискорбию, рушились стольчасто, что император Август был вынужден издать закон, ограничивающий ихвысоту 18 м.

О позвоночнике и скелете

Позвоночник людей и животных состоит из набора позвонков из твердойкостной ткани, по форме напоминающих маленькие барабаны. Между ними имеются"межпозвоночные диски", которые состоят из сравнительно мягкого материала,что позволяет позвонкам получать некоторые ограниченные взаимные смещения.Как правило, позвоночный столб подвергается общему сжатию - как под действиемвеса организма, который на нем держится, так и под действием натяженияразличных мышц и сухожилий.

У молодых людей материал межпозвоночных дисков обладает гибкостью ивязкостью и в случае необходимости может выдерживать значительные растягивающиенапряжения. Поэтому при повреждениях позвоночника под действием растягивающихсил разрушения обычно происходят в костях, а не в дисках. Однако с годами,начиная примерно с двадцати лет, материал дисков постепенно теряет своюгибкость, его прочность на разрыв падает, а достигнув почтенного возраста,наш позвоночник становится очень похож на колонну в храме. Позвонки уподобляютсякаменным барабанам, а диски - соединяющему их непрочному строительномураствору. Хотя диски все еще могут воспринимать небольшие растягивающиенапряжения, таких напряжений следует избегать.

Вот почему людям среднего возраста рекомендуется удерживать линию давленийвозможно ближе к центру позвоночного столба, именно в этом секрет правильногои неправильного способов поднятия тяжестей. Если груз поднимется неправильно,то в соединениях возникают слишком большие растягивающие силы и одно изсоединений может поломаться. Результатом этого будет "соскользнувший диск"или одна из тех разнообразных и довольно таинственных неприятностей, которыемы объединяем под общим названием "люмбаго", прострел, и которые обычнопричиняют сильную боль. Поскольку поведение позвоночника в какой-то степенипохоже на поведение стены или каменной колонны и допустимые ситуации определяются"правилом средней трети", все сказанное о пропорциональном увеличении размеровзданий применимо и к размерам животных. Вообразите, как будут менятьсяразмеры маленького животного. По мере увеличения его параметров толщинапозвонков будет изменяться пропорционально характерному размеру. Однакобольшинство других костей, таких, как ребра и кости конечностей, подвергаютсяглавным образом действию изгибающих нагрузок (подобно перемычкам храма),и эти нагрузки в основном пропорциональны массе животного. Это приводитк тому, что зависимость толщины таких костей от размеров животного должнабыть более сильной, чем просто линейная.

Если мы посмотрим в музее на скелеты нескольких близких видов животныхразного размера, например обезьян, то окажется, что, в то время как размерыпозвонков мелких и средних видов обезьян, горилл и человека в основномпропорциональны росту особей данного вида, толщина и вес костей конечностейи в особенности ребер растут гораздо быстрее, чем размеры животного (рис.81).

Рис. 81. Скелеты гиббона (слева) и гориллы (справа) иллюстрируют действиезакона двух третей: с увеличением размеров животных толщина их ребер и костейконечностей растет быстрее, чем толщина позвоночника.

Природа в этом отношении оказалась мудрее римских архитекторов: с увеличениемразмеров сооружавшихся храмов они отказались от надежного приземистогодорического стиля и стали строить их в витиеватом и великолепном коринфскомстиле с тонкими архитравами, которые часто не выдерживали непропорциональныхнагрузок.

Глава 9