Концепции современного естествознания — страница 23 из 95

«Уместно спросить: каково значение ньютоновского синтеза в наши дни, после создания теории поля, теории относительности и квантовой механики? Это — сложная проблема, и мы к ней еще вернемся. Теперь нам хорошо известно, что природа отнюдь не „комфортабельна и самосогласованна“, как полагали прежде. На микроскопическом уровне законы классической механики уступили место законам квантовой механики. Аналогичным образом на уровне Вселенной на смену ньютоновской физике пришла релятивистская физика. Тем не менее классическая физика и поныне остается своего рода естественной точкой отсчета. Кроме того, в том смысле, в каком мы определили ее, т. е. как описание детерминированных, обратимых, статичных траекторий, ньютоновская динамика и поныне образует центральное ядро всей физики» (А. Эйнштейн).

«Мы так привыкли к законам классической динамики, которые преподносятся нам едва ли не с младших классов средней школы, что зачастую плохо сознаем всю смелость лежащих в их основе допущений. Мир, в котором все траектории обратимы, — поистине странный мир. Не менее поразительно и другое допущение, а именно допущение полной независимости начальных условий от законов движения» (А. Эйнштейн).


III. Прокомментируйте схемы.


1. Структура современной физики.


2. Современные представления о пространстве и времени.


Литература.

Грин Б. Элегантная Вселенная: Суперструны, скрытые размерности и поиски окончательной теории. — М., 2008.

Оппенгеймер Р. Летающая трапеция. — М., 1967.

Пригожин И., Стенгерс И. Порядок из хаоса. — М., 1986.

Эйнштейн А., Инфельд Л. Эволюция физики. — М., 1965.


Глава 8Квантовая механика

Механика микромира.

В обычном, окружающем нас, макромире энергия может возрастать или убывать непрерывно. Например, когда какой-либо объект падает, его потенциальная энергия непрерывно уменьшается до того момента, когда падение прекратится. Но когда физики начали изучение микромира — мира атомов и элементарных частиц — они обнаружили необыкновенные свойства и, в частности, то, что энергия в микромире возрастает и убывает определенными неделимыми порциями. Отсюда стало ясно, что для объяснения процессов в микромире необходима новая теория взамен классической, созданной Ньютоном. Эта теория и получила название квантовой механики.

Квантовая механика — это физическая теория, устанавливающая способ описания и законы движения на микроуровне. Немецкий ученый М. Планк в 1900 г. предположил, что свет испускается неделимыми порциями энергии — квантами и математически представил это в виде формулы Е = hv, где V — частота света, а h — универсальная постоянная, характеризующая меру дискретной порции энергии, которой обмениваются вещество и излучение. В атомную теорию вошли, таким образом, прерывистые физические величины, которые могут изменяться только скачками.

Последующее изучение явлений микромира привело к результатам, которые резко расходились с общепринятыми в классической физике, и даже теории относительности, представлениями. Классическая физика видела свою цель в описании объектов, существующих в пространстве, и в формулировке законов, управляющих их изменениями во времени. Но для таких явлений, как радиоактивный распад, дифракция, испускание спектральных линий можно утверждать лишь, что имеется некоторая вероятность того, что индивидуальный объект таков и что он имеет такое-то свойство. В квантовой механике нет места для законов, управляющих изменениями отдельного объекта во времени.

Для классической механики характерно описание частиц путем задания их положения и скоростей и зависимости этих величин от времени. В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по-разному. Проведя какие-либо эксперименты с электроном, мы не будем всегда получать одинаковые результаты. Эксперимент с двумя отверстиями, через которые проходит электрон, позволяет и требует применения вероятностных представлений. Нельзя сказать, через какое отверстие пройдет данный электрон, но если их много, то можно предположить, что часть их проходит через одно отверстие, часть — через другое. Законы квантовой механики — законы статистического характера. «Мы можем предсказать, сколько приблизительно атомов (радиоактивного вещества. — А.Г.) распадутся в следующие полчаса, но мы не можем сказать… почему именно эти отдельные атомы обречены на гибель»[63]. В микромире господствует статистика, т. е. можно определить лишь средние значения большого числа объектов, как это имеет место в статистике.

Статистические законы можно применить только к большим совокупностям, но не к отдельным индивидуумам. Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы. На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Волны вероятности говорят о вероятности встретить электрон в том или ином месте.

В. Гейзенберг делает такой вывод: «В экспериментах с атомными процессами мы имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые явления повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорее мир тенденций или возможностей, чем мир вещей и фактов»[64].

В первой модели атома, построенной на основе экспериментального обнаружения квантования света, Н. Бор (1913) объяснил это явление тем, что излучение происходит при переходе электрона с одной орбиты на другую, при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществлялся переход. Так возникает линейчатый спектр — основная особенность атомных спектров (в спектрах оказываются волны лишь определенных длин).

Важная особенность явлений микромира заключается в том, что электрон ведет себя подобно частице, когда движется во внешнем электрическом или магнитном поле, и подобно волне, когда дифрагирует, проходя сквозь кристалл. Поведение потока частиц — электронов, атомов, молекул — при встрече с препятствиями или отверстиями атомных размеров подчиняется волновым законам: наблюдаются явления дифракции, интерференции, отражения, преломления и т. п. Л. де Бройль предположил, что электрон — это волна определенной длины.

Дифракция подтверждает волновую гипотезу, отсутствие увеличения энергии выбиваемых светом частиц — квантовую. Это получило название корпускулярно-волнового дуализма. Как же описывать процессы в микромире, если «нет никаких шансов последовательно описать световые явления, выбрав только какую-либо одну из двух возможных теорий — волновую или квантовую»[65]?

Некоторые эффекты объясняются волновой теорией, некоторые другие — квантовой, поэтому следует использовать разные формулы и из волновой, и из квантовой теории для более полного описания процессов — таков смысл принципа дополнительности Н. Бора. «Усилия Бора были направлены на то, чтобы сохранить за обоими наглядными представлениями, корпускулярным и волновым, одинаковое право на существование, причем он пытался показать, что хотя эти представления возможно исключают друг друга, однако они лишь вместе делают возможным полное описание процессов в атоме»[66].

С принципом дополнительности связано и так называемое соотношение неопределенностей, сформулированное в 1927 г. В. Гейзенбергом, в соответствии с которым в квантовой механике не существует состояний, в которых и местоположение, и количество движения (произведение массы на скорость) имели бы вполне определенное значение. Частица со строго определенным импульсом совершенно не локализована. Чем более определенным становится импульс, тем менее определенно ее положение.

Соотношение неопределенностей гласит, что для абсолютно точной локализации микрочастицы необходимы бесконечно большие импульсы, что физически не может быть осуществлено. Более того, современная физика элементарных частиц показывает, что при очень сильных воздействиях на частицу она вообще не сохраняется, а происходит даже множественное рождение частиц.

В более общем плане можно сказать, что только часть относящихся к квантовой системе физических величин может иметь одновременно точные значения, остальные величины оказываются неопределенными. Поэтому ни в одной квантовой системе не могут одновременно равняться нулю все физические величины.

Энергию системы также можно измерить с точностью, не превышающей определенной величины. Причина этого — во взаимодействии системы с измерительным прибором, который препятствует точному измерению энергии. Из соотношения неопределенностей вытекает, что энергии возбужденных состояний атомов, молекул, ядер не могут быть строго определенными. На этом выводе и основана гипотеза происхождения Вселенной из «возбужденного вакуума». В соответствии с нею вакуум рассматривается как виртуальный (т. е. возможный; это понятие возникло в квантовой механике и в настоящее время стало очень модным) мир, в котором возможно спонтанное возникновение энергетического потенциала, преобразующегося затем в вещество. Следует обратить внимание на слово «спонтанное». Оно соответствует еще одному принципу, введенному в квантовой механике, — принципу индетерминизма. В классической науке господствовал принцип детерминизма (от лат. «dëterminäre» — определять), в соответствии с которым каждое событие является следствием какой-либо причины. Невозможны события, не имеющие причины. Схематически это изображается так:

П → С,

где П — причина, а