1. Как соотносятся законы сохранения и законы эволюции?
2. Что такое парадокс времени и космологический парадокс?
3. Что такое «стрела времени»?
4. Что такое точка бифуркации?
5. Каково значение универсальной синергетической схемы развития?
6. В чем сходство и различия эволюции неживых и живых тел?
7. Какова роль вероятностных методов в классической термодинамике, квантовой механике и синергетике? Какова роль случайности?
8. Какова роль времени в теории относительности и синергетике?
9. Что такое организация и самоорганизация?
II. Прокомментируйте высказывания.
«По свидетельству Мишеля Серра, древние атомисты уделяли турбулентному течению столь большое внимание, что турбулентность с полным основанием можно считать основным источником вдохновения физики Лукреция. Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение — „клинамен“. Возникающий вихрь дает начало миру, всем вещам в природе. „Клинамен“, спонтанное непредсказуемое отклонение, нередко подвергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: „клинамен“ представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современные специалисты по гидродинамике проверяют устойчивость течения жидкости, вводя возмущение, выражающее влияние молекулярного хаоса, который накладывается на среднее течение. Не так уж далеко мы ушли от „клинамена“ Лукреция!» (И. Пригожин, И. Стенгерс).
III. Прокомментируйте схему.
Схема развития неживой природы.
Пригожин И., Стенгерс И. Время, хаос, квант. — М., 1994.
Пригожин И., Стенгерс И. Порядок из хаоса. — М., 1986.
Хакен Г. Синергетика. — М., 1980.
Глава 10Современная химия
Для большинства студентов-гуманитариев представляет большую сложность разделить предметы исследования физики и химии. Физика — наука о неживой природе. Но и химия то же. Трудность здесь связана с тем, что химия изучает один из уровней организации материи, который находится между двумя уровнями, изучаемыми физикой. Физика исследует уровень макровещества, но она же изучает и атомы. Когда в XVII в. возникла химия, то предполагалось, что она будет изучать все то, что относится к микромиру. Атомная физика, однако, начав в XX в. исследовать процессы, протекающие в микромире, оставила и более глубокие уровни организации материи за физикой. Химии пришлось удовольствоваться единственным уровнем, которым она занималась изначально, — молекулярным.
Химия изучает процессы превращения молекул и веществ и воздействия на них внешних факторов (тепла, света, физических полей и т. п.). Она изучает также связи между атомами, входящими в состав молекул (так называемые химические связи). Выяснилось, что главную роль здесь играют электроны, своего рода «клей», соединяющий ядра атомов. Создание квантовой механики привело к развитию квантовой химии, в которой электрон не считается движущимся по определенной орбите, а вводится представление об электронном облаке.
Рентгеноструктурный анализ, спектроскопические методы и метод ядерного магнитного резонанса позволили в XX в. определить строение огромного числа молекул, что имело не только важное теоретическое, но и практическое значение.
Выдающийся химик XX в. Н.Н. Семенов сводил различия физических и химических процессов к трем основным: у химических процессов есть история, у них отсутствуют мгновенные параметры для скоростей реакций, для них нельзя пользоваться равновесными параметрами. Развитие синергетики существенно уменьшило эти различия, сблизив предметы физики и химии.
Важная заслуга химии заключается в том, что она показала большое значение структуры для свойств вещества и ее относительную самостоятельность. Скажем, алмаз и графит имеют одинаковый вещественный состав (они состоят из углерода), но различие их структур (решетчатая у алмаза и слоистая у графита) приводит к коренному различию свойств. Алмаз — один из самых твердых веществ, а графит, напротив, очень мягок. Именно оценив важность структуры, химия стала родоначальницей структурного подхода, который затем распространился на другие науки, и не только естественные, но и гуманитарные.
Большое значение в химии XX в. имело изучение катализаторов — веществ, которые изменяют скорость реакций, но не входят в состав их конечного продукта. Катализаторы важны для процессов, происходящих в живых организмах. Примером катализаторов является хлорофилл — вещество в живой ткани зеленого листа, благодаря которому происходит процесс фотосинтеза.
Химия имеет ныне огромное практическое значение. Повышение урожайности сельскохозяйственных культур благодаря применению минеральных удобрений и ядохимикатов дало возможность говорить о «зеленой революции», но это же привело к загрязнению почв и самих производимых продуктов, так что в большей цене оказались продукты, выращенные «без химии». В промышленности новые химические вещества дали возможность существенно обогатить производственный потенциал, но и это повлекло за собой отрицательные экологические последствия, так как большинство новых химических веществ не усваивалось природной средой и, таким образом, тоже становилось ее загрязнителями. Химия нашла широкое применение в быту, в частности в косметике (появилось выражение «сделать химию»), что также имело свою обратную экологическую сторону.
К 1914 г. были открыты отрицательные и положительные частицы: отрицательная — электрон (в конце XIX в.), положительная — позже, и в 1920 г. английский ученый Э. Резерфорд (1871–1937) назвал ее протоном. В 1932 г. английский ученый Д. Чедвик (1891–1974) открыл частицу с такой же массой, как у протона, но не несущую электрического заряда. Ее назвали нейтроном. В. Гейзенберг сразу же после открытия нейтрона предположил, что положительно заряженные частицы большой массы представляют собой протонно-нейтронные комбинации.
Э. Резерфорд с 1906 г. бомбардировал альфа-частицами тонкие листочки металла. На основании того, что большинство альфа-частиц беспрепятственно проходили через пластинки, а некоторые резко отклонялись, он создал теорию строения атома, в соответствии с которой атом имеет небольшое плотное ядро и электронные оболочки, занимающие основную часть объема атома. Немецкий ученый М. Лауэ (1879–1960) в 1909 г., бомбардируя рентгеновскими лучами кристаллы, установил, что они состоят из атомов, образующих кристаллическую решетку.
В 1920 г. Д. Чедвик экспериментально доказал равенство заряда ядра порядковому номеру химического элемента в Периодической системе элементов Менделеева и возникло новое определение химического элемента. Вместо вещества, неразложимого на более простые, химический элемент стали понимать как совокупность атомов с одинаковым зарядом ядра. Именно зарядом, который зависит от количества протонов в ядре, определяются свойства химического элемента. Количество нейтронов в ядре не всегда одинаково, и в этом случае говорят, что химический элемент имеет несколько изотопов. Так, калий имеет три изотопа — калий-39, калий-40 и калий-41, где числа обозначают атомную массу, которая равна сумме протонов и нейтронов (масса электронов во много раз меньше).
В 1934 г. французскими физиками Ф. и И. Жолио-Кюри были получены первые искусственные изотопы, т. е. изотопы, которые отсутствуют в природе. В 1937 г. создан первый искусственный химический элемент, который назвали технецием.
Теоретической основой систематизации химических элементов послужила периодическая система Д.И. Менделеева. Важной в химии является теория химического строения А.М. Бутлерова, созданная во второй половине XIX в. В своей теории он дал определение понятия химического строения как распределения принадлежащих атомам сил сродства, вследствие которых образуются химические связи различной прочности. Он обратил внимание на то, что различная реакционная способность разных соединений объясняется большей или меньшей энергией, с которой связываются атомы (т. е. энергией связей), а также полным или неполным потреблением единиц сродства при образовании химических связей.
Фундаментальная для химии теория химической связи была создана в первые десятилетия XX в. после того, как атомная физика выяснила внутреннее строение молекул и вышла на уровень, который находится ниже молекулярного, — атомный. В 1916 г. Г. Льюис (1875–1946) и И. Ленгмюр (1881–1957) независимо друг от друга установили, что связь между атомами в молекуле осуществляют электроны. Когда два атома сталкиваются и вступают в реакцию, они или перераспределяют свои электроны и после расходятся, или объединяют свои электроны. Электроны располагаются вокруг ядра атома оболочками и при столкновении во взаимодействие вступают внешние оболочки. Часть электронов переходит из внешней оболочки одного атома во внешнюю оболочку другого. Оба атома оказываются противоположно заряженными и начинают притягиваться друг к другу, создавая химическую связь, называемую ионной. Атомы могут также объединять свои электроны, представляя их в совместное пользование. Такая связь получила название ковалентной.
Превращение одного вещества в другое называется химической реакцией. Химия изучает способность веществ вступать в химические реакции и характер протекания реакций. Реакционная способность веществ зависит от их структуры, а течение реакций — от состава реагирующих веществ и влияния внешних факторов (давления, температуры и т. п.). К важнейшим факторам, влияющим на скорость реакций, относятся: природа реагирующих веществ и их концентрация, размеры частиц реагентов, присутствие в системе катализаторов, температура и давление газообразных реагентов. Влияние температуры на скорость реакции определяется правилом Я. Вант-Хоффа, в соответствии с которым при повышении температуры на 10 градусов скорость реакции увеличивается в 2–4 раза. Закон действующих масс в химической кинетике выражает зависимость скорости реакции от концентрации реагирующих веществ. Все химические реакции делятся на гетерогенные и гомогенные. Последние протекают в однородной однофазной системе.