[93]. Результаты исследований Г. Менделя, опубликованные в 1865 г., не обратили на себя внимания и были переоткрыты после 1900 г.
Этап 2. А. Вейсман (1834–1914) показал, что половые клетки обособлены от остального организма и поэтому не подвержены влияниям, действующим на соматические ткани.
Несмотря на убедительные опыты А. Вейсмана, которые было легко проверить, победившие в советской биологии сторонники Т.Д. Лысенко долго отрицали генетику, называя ее вейсманизмом-морганизмом. В этом случае идеология победила науку, и многие ученые, как, например, Н.И. Вавилов, были репрессированы.
Этап 3. Г. де Фриз (1848–1935) открыл существование наследуемых мутаций, составляющих основу дискретной изменчивости. Он предположил, что новые виды возникали вследствие мутаций.
Понятие мутации в генетике аналогично понятию флуктуации в синергетике. Мутация — это частичное изменение структуры гена. Конечный ее эффект — изменение свойств белков, кодируемых мутантными генами. Появившийся в результате мутации признак не исчезает, а накапливается. Мутации вызываются радиацией, воздействием химических соединений, изменением температуры, наконец, они могут быть просто случайными.
«Согласно нашей аналогии мутации, очевидно, представляют собой опечатки, неизбежно появляющиеся при каждом новом переиздании Книги Жизни. Подобно тому как в наших книгах опечатки чаще всего приводят к бессмыслице и крайне редко улучшают текст, так и мутации почти всегда приносят вред; чаще всего они просто убивают организм или клетку на очень ранних стадиях, и мы даже не замечаем, что они вообще существовали на свете. С другой стороны, тот факт, что мутация летальна, сам по себе исключает опечатку из последующих изданий, ибо содержащая эту мутацию клетка никогда не произведет себе подобных. В иных случаях мутация может оказаться вредной, но не летальной. Она появится и в новых клетках, но есть надежда, что такие вредные мутации в последующих поколениях исчезнут в результате естественного отбора. Изредка все же считается, что мутация оказывает благоприятное действие. Она уже не исчезает, поскольку создает организму большие преимущества в борьбе за существование. В конце концов, эта мутация будет постоянно включаться в Книгу Жизни данного вида организмов. Так протекает процесс эволюции»[94].
Этап 4. Т. Морган (1866–1945) создал хромосомную теорию наследственности, в соответствии с которой каждому биологическому виду присуще свое строго определенное число хромосом.
Этап 5. Г. Меллер в 1927 г. установил, что генотип может изменяться под действием рентгеновских лучей. Отсюда берут свое начало индуцированные мутации и то, что впоследствии было названо генетической инженерией с ее грандиозными возможностями и опасностями вмешательства в генетический механизм.
Этап 6. Дж. Бидл и Э. Татум в 1941 г. выявили генетическую основу процессов биосинтеза.
Этап 7. Дж. Уотсон и Ф. Крик предложили модель молекулярной структуры ДНК и механизма ее репликации.
То, что именно ДНК является носителем наследственной информации, выяснилось в середине 40-х гг. XX в., когда после перенесения ДНК одного штамма бактерий в другой в нем стали появляться бактерии штамма, чья ДНК была взята.
25-летний Дж. Уотсон, приехав в 1953 г. из США в Кембридж, должен был заниматься изучением структуры белка. Он подолгу беседовал с Ф. Криком о появившихся только что улучшенных рентгенограммах ДНК и правилах спаривания ее оснований. Им удалось расшифровать ДНК за несколько недель.
Чуть позже был открыт триплетный перекрывающийся (как азбука Морзе) генетический код, универсальный для всех организмов, и ядро стало пониматься как орган управления, содержащий всю информацию о клетке. Продолжая аналогию ДНК с книгой, можно сказать, что если аминокислота — это слово, то бактерия — книга, а человек — огромная энциклопедия.
В заключение следует сказать несколько слов о генетических аспектах поведения вирусов, которые в тысячу раз больше обычных молекул белка, не питаются и не растут, а воспроизводятся только в клетке хозяина. Их изучение хорошо демонстрирует значение аппарата наследственности.
Вирус имеет головку и спираль с хвостом. Спиральная пружина сжимается и подобно игле проталкивает хвост внутрь клетки. Затем через трубку вспрыскивается ДНК, и примерно уже через несколько минут клетка разрывается, освобождая сотню и больше новых вирусных частиц, готовых к заражению новых клеток. Процесс заражения сходен с государственным переворотом. Вирус совершает революцию в клетке. Бороться с ним можно с помощью интерферона — синтезируемого клетками вещества, которое специально предназначено для разрушения чужих ДНК.
Генетика свидетельствует: мы несем в себе информацию наших умерших предков и всей природы. Вся природа как бы заключена в нас. Это говорит об ответственности, налагаемой на нас природой.
Перед современной генетикой стоят проблемы изучения сочетаний (связок) генов, их динамики (наблюдение за изменением признаков), поиска социально обусловленных генов.
Появление генетики повлияло на структуру исследования в биологии в целом. «Биологи прежних лет в целом продвигались сверху вниз. Они начинали с целого организма, потом разнимали его на части и рассматривали отдельные органы и ткани; далее они изучали отдельные клетки под микроскопом — так мало-помалу они продвигались вниз, от сложного к простому. Новая биология начинает с другого конца и продвигается с самого низа вверх. Она начала с простейших компонентов живого организма — стала изучать отдельные молекулы и их взаимодействие внутри клеток, пренебрегая всем остальным. Теперь пришла пора обратиться к этому остальному и двигаться вверх вдоль иерархии биологической организации»[95]. По этому пути и идет современная биология.
Развитие генетики способствовало созданию синтетической теории эволюции. Применительно к живой природе эволюцию понимают как образование более сложных видов из простых. Как это происходит? Существует ли целесообразность в природе? Какова роль случайности? Что является источником развития: тренировка органов (Ж.Б. Ламарк); борьба за существование и выживание наиболее приспособленных (естественный отбор, по Ч. Дарвину); способность к взаимопомощи (П.А. Кропоткин); природные катастрофы: кометы, изменения температуры и пр. (Ж. Кювье)?
Генетика с помощью простых опытов опровергла эволюционные представления Ж.Б. Ламарка о наследовании приобретенных при жизни признаков. Так, А. Вейсман последовательно на протяжении многих поколений отрезал мышам хвосты. Он постулировал, что признаки, приобретаемые организмом и приводящие к изменению фенотипа, не оказывают прямого воздействия на половые клетки, передающие признаки следующему поколению.
Как же происходит эволюция видов? Ч. Дарвин (1809–1882) во время своего кругосветного плавания на корабле «Бигль» собрал множество данных, свидетельствующих о том, что виды нельзя считать неизменными. После возвращения в Англию он приступил к изучению практики разведения голубей и других домашних животных, что натолкнуло его на идею естественного отбора. В 1778 г. священник Т. Мальтус опубликовал «Трактат о народонаселении», в котором обрисовал, к чему привел бы рост населения, если бы он ничем не сдерживался. Ч. Дарвин перенес его рассуждения на природу и обратил внимание на то, что несмотря на высокий репродуктивный потенциал, численность популяций остается относительно постоянной. Ученый предположил, что при интенсивной конкуренции внутри популяции любые изменения, благоприятные для выживания в данных условиях, повышают способность особей размножаться и оставлять потомство. Это стало первым основанием теории эволюции.
Другим основанием теории эволюции послужил принцип униформизма английского геолога Ч. Лайеля (1797–1875), в соответствии с которым медленные ничтожные изменения приводят к поразительным результатам, если происходят долго в одном направлении. Точно так же небольшие изменения на протяжении миллионов лет приводят к образованию новых видов.
Непосредственно на мысль об эволюции органических форм Ч. Дарвина натолкнула находка в одном и том же регионе (в Южной Америке) скелетов ленивца — огромного (ископаемого) и маленького (современного).
Теория эволюции была сформулирована Ч. Дарвином в 1839 г. Наибольший вклад ученого в науку заключался не в том, что он доказал существование эволюции, а в том, что он объяснил, как она может происходить. В 1859 г. Ч. Дарвин опубликовал труд «Происхождение видов путем естественного отбора». Гипотеза ученого основана на трех наблюдениях и двух выводах.
Наблюдение 1. Особи, входящие в состав популяции, обладают большим репродуктивным потенциалом.
Наблюдение 2. Число особей в каждой данной популяции примерно постоянно.
Вывод 1. Многим особям не удается выжить и оставить потомство. В популяции происходит «борьба за существование».
Наблюдение 3. Во всех популяциях существует изменчивость.
Вывод 2. В «борьбе за существование» те особи, признаки которых наилучшим образом приспособлены к условиям жизни, обладают «репродуктивным преимуществом» и производят больше потомков, чем менее приспособленные особи. Этот вывод содержит гипотезу о естественном отборе, который может служить механизмом эволюции.
Не столь важно, о какой конкуренции идет речь: внутри- или межвидовой. Решающим фактором, определяющим выживание, является приспособленность к среде. Любое, пусть даже самое незначительное физическое, физиологическое или поведенческое изменение, дающее одному организму преимущество перед другим, будет действовать в «борьбе за существование» как селективное преимущество. Благоприятные изменения будут передаваться следующим поколениям, а неблагоприятные — устраняться отбором, так как они невыгодны организму. Действуя таким образом, естественный отбор ведет к повышению «мощности» вида, а в филогенетическом плане обеспечивает его выживание.