Понятие целесообразности претерпело длительную эволюцию в истории человеческой культуры. Во времена господства мифологического мышления деятельность любых, в том числе неживых, тел могла быть признана целесообразной на основе антропоморфизма, т. е. приписывания явлениям природы причин по аналогии с деятельностью человека. Философ Аристотель в числе причин функционирования мира наряду с материальной, формальной, действующей назвал и целевую. Религиозное понимание целесообразности основывается на представлении о том, что Бог создал мир с определенной целью, и, стало быть, мир в целом целесообразен.
Научное понимание целесообразности строилось на обнаружении в изучаемых предметах объективных механизмов целеполагания. В Новое время наука изучала простые системы, поэтому она скептически относилась к понятию цели. Положение изменилось в XX в., когда естествознание перешло к изучению сложных систем с обратной связью, так как именно в таких системах существует внутренний механизм целеполагания. Наука, которая первой начала исследование подобных систем, получила название кибернетики.
Точно так же, как разнообразные машины и механизмы облегчают физический труд людей, ЭВМ (электронно-вычислительные машины) и персональные компьютеры облегчают их умственный труд, заменяя человеческий мозг при выполнении простых задач. ЭВМ действуют по принципу «да-нет». Они хотя и уступают человеческому мозгу в гибкости, но превосходят его по быстроте выполнения вычислительных операций. Аналогия между ЭВМ и мозгом человека дополняется тем, что ЭВМ как бы выполняют роль центральной нервной системы для устройств автоматического управления.
Понятие «самообучающиеся машины» аналогично воспроизводству живых систем. И то и другое есть созидание себя (в себе и в другом). Обучение онтогенетически есть то же, что и самовоспроизводство филогенетически.
Как бы ни протекал процесс воспроизводства, он является динамическим процессом, включающим какие-то силы или их эквиваленты. «Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частотном строении ее молекулярного излучения, значительная часть которого лежит, по-видимому, в области инфракрасных электромагнитных частот или даже ниже. Может оказаться, что специфические вещества вируса при некоторых обстоятельствах излучают инфракрасные колебания, которые обладают способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое явление позволительно рассматривать как некоторое притягательное взаимодействие частот»[162].
Такова гипотеза воспроизводства Н. Винера, предлагающая единый механизм самовоспроизводства для живых и неживых систем.
Современные ЭВМ значительно превосходят те, которые появились на заре кибернетики. Еще 10 лет назад специалисты сомневались, что шахматный компьютер когда-нибудь сможет обыграть приличного шахматиста, но теперь он практически на равных сражается с чемпионом мира. Громадная скорость перебора вариантов (100 млн. в секунду против 2 вариантов в секунду у человека) остро ставит вопрос не только о возможностях ЭВМ, но и о том, что такое человеческий разум.
Предполагалось, что ЭВМ будут с годами все более мощными и массивными, но, вопреки прогнозам крупнейших ученых, были созданы персональные компьютеры, которые стали атрибутом нашей жизни. В перспективе нас ждет всеобщая компьютеризация и создание человекоподобных роботов.
Однако следует иметь в виду, что человек не только логически мыслящее, но и творческое существо. Способность творить — результат всей предшествующей эволюции. Если же будут построены человекоподобные роботы, превосходящие человека по уму, то это повод не только для радости, но и для беспокойства, связанного как с роботизацией самого человека, так и с проблемой возможного выхода роботов из-под контроля людей и даже порабощения ими человека. Конечно, пока это не более, чем далекая от реальности фантастика.
Благодаря кибернетике и созданию ЭВМ одним из основных способов познания, наравне с наблюдением и экспериментом, стал метод моделирования. Применяемые модели становятся все более масштабными. Так, наряду с моделями функционирования предприятия и экономической отрасли появляются комплексные модели управления биогеоценозами, эколого-экономические модели рационального природопользования в пределах целых регионов, глобальные модели.
В 1972 г. на основе метода «системной динамики» Дж. Форрестера были построены первые так называемые «модели мира», нацеленные на выработку сценариев развития всего человечества в его взаимоотношении с биосферой. Их недостатки заключались в чрезмерно высокой степени обобщения переменных, характеризующих процессы, протекающие в мире, в отсутствии данных об особенностях и традициях различных культур и т. д. Однако это направление оказалось многообещающим. Постепенно указанные недостатки преодолевались в процессе создания последующих глобальных моделей, которые принимали все более конструктивный характер, ориентируясь на рассмотрение вопросов улучшения существующего эколого-экономического положения на планете.
М. Месаровичем и Э. Пестелем были построены глобальные модели на основе теории иерархических систем, а В. Леонтьевым — на основе разработанного им в экономике метода «затраты-выпуск». Дальнейший прогресс в глобальном моделировании ожидается на путях построения моделей, все более адекватных реальности, сочетающих в себе глобальный, региональный и локальный моменты.
Споры относительно эффективности применения кибернетических моделей в глобальных исследованиях не умолкают и поныне. Создатель метода системной динамики Дж. Форрестер выдвинул так называемый «контринтуитивный принцип», в соответствии с которым функционирование сложных систем принципиально противоречит человеческой интуиции, и, стало быть, машины могут дать более точный прогноз поведения этих систем, чем человек. Другие исследователи считают, что «контринтуитивное поведение» свойственно тем системам, которые находятся в критической ситуации.
Трудности формализации многих важных данных, необходимых для построения глобальных моделей, а также ряд других моментов свидетельствуют о том, что значение машинного моделирования не следует абсолютизировать. Моделирование может принести наибольшую пользу в том случае, если будет сочетаться с другими видами исследований.
Простираясь на изучение все более сложных систем, метод моделирования становится необходимым средством как познания, так и преобразования действительности. В настоящее время можно говорить о преобразовательной функции моделирования, позволяющей оптимизировать сложные системы.
Эта функция способствует уточнению целей и средств реконструкции реальности. Свойственная моделированию трансляционная функция способствует синтезу знаний — задаче, имеющей первостепенное значение на современном этапе изучения мира.
Прогресс в области моделирования следует ожидать не на пути противопоставления одних типов моделей другим, а на пути их синтеза. Универсальный характер моделирования на ЭВМ дает возможность синтеза самых разнообразных знаний, а свойственный этому виду моделирования функциональный подход служит целям управления сложными системами.
1. Что изучает кибернетика?
2. Каково значение информации, слова?
3. Что такое положительная и отрицательная обратная связь?
4. Что такое функциональный подход и чем он отличается от вещественного и структурного?
5. Что такое «черный ящик» в кибернетике?
6. Каковы результаты исследований «моделей мира»?
7. Может ли машина мыслить?
8. Каково донаучное, научное и теологическое понимание целесообразности?
9. Есть ли цель у камня, животного, компьютера, человека, эволюции?
I. Ответьте на вопросы.
1. В чем разница между целесообразной деятельностью человека и животных?
2. Каков критерий целесообразности с научной точки зрения?
3. Каково соотношение закона развития и целесообразности?
4. Что представляют собой целесообразные системы?
5. Солнце всходит и заходит целесообразно?
6. Каковы сходства и различия между созданными моделями мира?
7. Что такое объективная и субъективная информация?
8. Что такое прямая и обратная связь?
9. Что такое гомеостат, «черный ящик», функция и функциональный подход?
10. Что такое Интернет?
11. Почему будущее общество предлагают назвать информационным?
II. Прокомментируйте схему.
Схема управления.
Винер Н. Кибернетика, или Управление и связь в животном и машине. — М., 1968.
Винер Н. Я — математик. — М., 1967.
Медоуз Д.Х., Медоуз Д.Л., Рэндерс Й., Берне В.В. Пределы роста. — М., 1991.
Эшби У.Р. Введение в кибернетику. — М., 1959.
Глава 17Нейрофизиология и изучение психики
Некоторые из современных наук имеют вполне законченный вид, другие интенсивно развиваются или находятся в стадии становления. Это вполне понятно, так как наука эволюционирует, как и природа, которую она изучает. Одной из перспективных областей естествознания является изучение человеческого мозга и связи психических процессов с физиологическими.
Изучение высшей нервной деятельности возможно физическими, химическими методами, методом гипноза и т. п. Среди тем, интересных с естественно-научной точки зрения, можно выделить: непосредственное воздействие на мозговые центры, опыты с наркотиками (в особенности с ЛСД), кодирование поведения на расстоя