Концепции современного естествознания — страница 73 из 95

Мы имеем две реальности: вещество и поле. Несомненно, что в настоящее время мы не можем представить себе всю физику построенной на понятии вещества, как это делали физики в начале девятнадцатого столетия. В настоящее время мы принимаем оба понятия. Можем ли мы считать вещество и поле двумя различными, несходными реальностями? Пусть дана маленькая частица вещества; мы могли бы наивно представить себе, что имеется определенная поверхность частицы, за пределами которой ее уже нет, а появляется ее поле тяготения. В нашей картине область, в которой справедливы законы поля, резко отделена от области, в которой находится вещество. Но что является физическим критерием, различающим вещество и поле? Раньше, когда мы не знали теории относительности, мы пытались бы ответить на этот вопрос следующим образом: вещество имеет массу, в то время как поле ее не имеет. Поле представляет энергию, вещество представляет массу. Но мы уже знаем, что такой ответ в свете новых знаний недостаточен. Из теории относительности мы знаем, что вещество представляет собой огромные запасы энергии и что энергия представляет вещество. Мы не можем таким путем провести качественное различие между веществом и полем, так как различие между массой и энергией не качественное. Гораздо большая часть энергии сосредоточена в веществе, но поле, окружающее частицу, также представляет собой энергию, хотя и в несравненно меньшем количестве. Поэтому мы могли бы сказать: вещество — там, где концентрация энергии велика, поле — там, где концентрация энергии мала. Но если это так, то различие между веществом и полем скорее количественное, чем качественное. Нет смысла рассматривать вещество и поле как два качества, совершенно отличные друг от друга. Мы не можем представить себе определенную поверхность, ясно разделяющую поле и вещество.

Те же трудности вырастают для заряда и его поля. Кажется невозможным дать ясный качественный критерий для различения между веществом и полем или зарядом и полем.

Структурные законы, то есть законы Максвелла и гравитационные законы, нарушаются для очень большой концентрации энергии или, как мы можем сказать, они нарушаются там, где присутствуют источники поля, т. е. электрические заряды или вещество. Но не можем ли мы слегка модифицировать наши уравнения так, чтобы они были справедливы всюду, даже в областях, где энергия колоссально сконцентрирована?

Мы не можем построить физику на основе только одного понятия — вещества. Но деление на вещество и поле, после признания эквивалентности массы и энергии, есть нечто искусственное и неясно определенное. Не можем ли мы отказаться от понятия вещества и построить чистую физику поля? То, что действует на наши чувства в виде вещества, есть на деле огромная концентрация энергии в сравнительно малом пространстве. Мы могли бы рассматривать вещество как такие области в пространстве, где поле чрезвычайно сильно. Таким путем можно было бы создать основы новой философии. Ее конечная цель состояла бы в объяснении всех событий в природе структурными законами, справедливыми всегда и всюду. С этой точки зрения брошенный камень есть изменяющееся поле, в котором состояния наибольшей интенсивности поля перемещаются в пространстве со скоростью камня. В нашей новой физике не было бы места и для поля, и для вещества, поскольку единственной реальностью было бы поле. Этот новый взгляд внушен огромными достижениями физики поля, успехом в выражении законов электричества, магнетизма, тяготения в форме структурных законов и, наконец, эквивалентностью массы и энергии. Нашей основной задачей было бы модифицировать законы поля таким образом, чтобы они не нарушались для областей, в которых энергия имеет колоссальную концентрацию.

Но до сих пор мы не имели успеха в последовательном и убедительном выполнении этой программы. Заключение о том, возможно ли ее выполнить, — принадлежит будущему. В настоящее время во всех наших реальных теоретических построениях мы все еще должны допускать две реальности — поле и вещество.

Фундаментальные проблемы еще стоят перед нами. Мы знаем, что все вещество состоит лишь из частиц немногих видов. Как различные формы вещества построены на этих элементарных частицах? Как эти элементарные частицы взаимодействуют с полем? Поиски ответа на эти вопросы привели к новым идеям в физике, идеям квантовой теории.


Подведем итоги:

В физике появилось новое понятие, самое важное достижение со времени Ньютона: поле. Потребовалось большое научное воображение, чтобы уяснить себе, что не заряды и не частицы, а поле в пространстве между зарядами и частицами существенно для описания физических явлений. Понятие поля оказывается весьма удачным и приводит к формулированию уравнений Максвелла, описывающих структуру электромагнитного поля, управляющих электрическими, равно как и оптическими явлениями.

Теория относительности возникает из проблемы поля. Противоречия и непоследовательность старых теорий вынуждают нас приписывать новые свойства пространственно-временнóму континууму, этой арене, на которой разыгрываются все события нашего физического мира.

Теория относительности развивается двумя этапами. Первый этап приводит к так называемой специальной теории относительности, применяемой только к инерциальным системам координат, т. е. к системам, в которых справедлив закон инерции, как он был сформулирован Ньютоном. Специальная теория относительности основывается на двух фундаментальных положениях: физические законы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга; скорость света всегда имеет одно и то же значение. Из этих положений, полностью подтвержденных экспериментом, выведены свойства движущихся стержней и часов, изменения их длины и ритма, зависящие от скорости. Теория относительности изменяет законы механики. Старые законы несправедливы, если скорость движущейся частицы приближается к скорости света. Новые законы движения тела, сформулированные теорией относительности, блестяще подтверждаются экспериментом. Дальнейшее следствие теории относительности (специальной) есть связь между массой и энергией. Масса — это энергия, а энергия имеет массу. Оба закона сохранения — закон сохранения массы и закон сохранения энергии — объединяются теорией относительности в один закон, в закон сохранения массы-энергии.

Общая теория относительности дает еще более глубокий анализ пространственно-временнóго континуума. Справедливость теории относительности больше не ограничивается инерциальными системами координат. Теория берется за проблему тяготения и формулирует новые структурные законы для поля тяготения. Она заставляет нас проанализировать роль, которую играет геометрия в описании физического мира. Эквивалентность тяжелой и инертной масс она рассматривает как существенный, а не просто случайный факт, каким она была в классической механике. Экспериментальные следствия общей теории относительности лишь слегка отличаются от следствий классической механики. Они выдерживают экспериментальную проверку всюду, где возможно сравнение. Но сила теории заключается в ее внутренней согласованности и простоте ее основных положений.

Теория относительности подчеркивает важность понятия поля в физике. Но нам еще не удалось сформулировать чистую физику поля. В настоящее время мы должны еще предполагать существование и поля, и вещества.

Эйнштейн А., Инфельд Л.

Эволюция физики: Развитие идей от первоначальных понятий до теории относительности. — М., 1965. — с. 147–203.


Вернер ГзйзенбергФизика и философияЧасть и целое

История квантовой теории.

Возникновение квантовой теории связано с известным явлением, которое вовсе не принадлежит к центральным разделам атомной физики. Любой кусок вещества, будучи нагрет, начинает светиться и при повышении температуры становится красным, а затем — белым. Цвет почти не зависит от вещества и для черного тела определяется исключительно температурой. Поэтому излучение, производимое таким черным телом при высокой температуре, является интересным объектом для физического исследования. Поскольку речь идет о простом явлении, то для него должно быть дано и простое объяснение на основе известных законов излучения и теплоты. Попытка такого объяснения, предпринятая Рэлеем и Джинсом в конце XIX века, столкнулась с весьма серьезными затруднениями. К сожалению, эти трудности нельзя объяснить с помощью простых понятий. Вполне достаточно сказать, что последовательное применение известных в то время законов природы не привело к удовлетворительным результатам.

Когда научные занятия привели Планка в 1895 году в эту область исследований, он попытался на первый план выдвинуть не проблему излучения, а проблему излучающего атома. Хотя поворот в сторону излучающего атома и не устранил серьезных трудностей, однако благодаря этому стали проще их интерпретация и объяснение эмпирических результатов. Как раз в это время, летом 1900 года, Курльбаум и Рубенс произвели новые чрезвычайно точные измерения спектра теплового излучения. Когда Планк узнал об этих измерениях, он попытался выразить их с помощью несложных математических формул, которые на основании его исследований взаимосвязи теплоты и излучения представлялись ему правдоподобными. Однажды Планк и Рубенс встретились за чаем в доме Планка и сравнили эти результаты Рубенса с формулой, которую предложил Планк для объяснения результатов измерений Рубенса. Сравнение показало полное соответствие. Таким образом был открыт закон теплового излучения Планка.

Для Планка это открытие было только началом интенсивных теоретических исследований. Стоял вопрос: какова правильная физическая интерпретация новой формулы? Так как Планк на основании своих более ранних работ легко мог истолковать эту формулу как утверждение об излучающем атоме (так называемом осцилляторе), он вскоре понял, что его формула имеет такой вид, как если бы осциллятор изменял свою энергию не непрерывно, а лишь отдельными квантами и если бы он мог находиться только в определенных состояниях или, как говорят физики, в дискретных состояниях энергии. Этот результат так отличался от всего, что знали в классической физике, что вначале Планк, по-видимому, отказывался в него верить. Но в период наиболее интенсивной работы, осенью 1900 года, он наконец пришел к убеждению, что уйти от этого вывода невозможно. Как утверждает сын Планка, его отец рассказывал ему, тогда еще ребенку, о своих новых идеях во время долгих прогулок по Грюневальду. Он объяснял, что чувствует — либо он сделал открытие первого ранга, быть может, сравнимое только с открытием Ньютона, либо он полностью ошибается. В это же время Планку стало ясно, что его формула затрагивает самые основы описания природы, что эти основы претерпят серьезное изменение и изменят свою традиционную форму на совершенно неизвестную. Планк, будучи консервативным по своим взглядам, вовсе не был обрадован этими выводами. Однако в декабре 1900 года он опубликовал свою квантовую гипотезу.