Концепции современного естествознания — страница 84 из 95

Те из нас, кто способствовал развитию новой науки — кибернетики, находятся, мягко говоря, не в очень-то утешительном моральном положении. Эта новая наука, которой мы помогли возникнуть, ведет к техническим достижениям, создающим, как я сказал, огромные возможности для добра и для зла. Мы можем передать наши знания только в окружающий нас мир, а это — мир Бельзена и Хиросимы. Мы даже не имеем возможности задержать новые технические достижения. Они носятся в воздухе, и самое большее, чего добился бы кто-нибудь из нас своим отказом от исследований по кибернетике, был бы переход всего дела в руки самых безответственных и самых корыстных из наших инженеров. Самое лучшее, что мы может сделать, — это позаботиться о том, чтобы широкая публика понимала общее направление и значение этой работы, и ограничиться в своей собственной деятельности такими далекими от войны и эксплуатации областями, как физиология и психология. Как упоминалось выше, есть и такие, кто надеется, что польза от лучшего понимания человека и общества, которое дает эта новая наука, сможет предупредить и перевесить наше невольное содействие концентрации власти (которая всегда — по самим условиям своего существования — сосредоточивается в руках людей, наиболее неразборчивых в средствах). Но я пишу это в 1947 г. и должен заявить, что надежда на такой исход очень слаба.

Ноябрь, 1947 г.

Национальный институт кардиологии, г. Мехико.


Винер Н.

Кибернетика, или Управление и связь в животном и машине. — М., 1968. — с. 43–79.


Джон КендрюНить жизни

Глава 2Внутри клетки

В предыдущей главе мы говорили о революционных потрясениях в биологии, благодаря которым создалась возможность все более глубокого и полного изучения живых организмов при все возрастающей степени разрешения. Мы говорили о целом организме. Затем — о клетке и, наконец, обратились к химическим реакциям, протекающим внутри клетки, сравнив их с производственными процессами на фабрике.

Далее мы сказали, что молекулярная биология исследует главным образом работу клетки на молекулярном уровне и при этом вскользь упомянули два наиболее важных вида молекул, являющихся компонентами клетки, а именно молекулы белков и молекулы нуклеиновых кислот. Мы указали, что и те, и другие представляют собой молекулы-гиганты, состоящие из тысяч атомов, тогда как обычные молекулы, с которыми привыкли работать химики, содержат не более нескольких десятков атомов. Мы отметили, что именно такие гигантские молекулы играют в биологических системах наиболее важную роль.

Фактически секрет возникновения, существования и значения молекулярной биологи кроется в появлении возможности изучать эти гигантские молекулы, не подвластные старым химическим методам.

Три следующие главы будут посвящены белкам. Пытаясь представить, как выглядит молекула белка, мы будем вынуждены перейти на язык химических формул и молекулярных моделей, причем это будут достаточно сложные формулы и модели — речь ведь идет об очень сложных молекулах. Поэтому сначала мы попытаемся выяснить, что означают те формулы и модели, которыми пользуются химики.

Формулы — это всего лишь символы. Когда вы смотрите на формулу вещества, вы видите не само вещество, а только его символ — своего рода абстракцию реального объекта. Но опытному глазу химика она кое-что говорит. Она как бы заставляет звенеть звоночки в его мозгу, и чем опытней химик, тем больше таких звоночков будет звенеть.

Возьмем, к примеру, формулу воды Н2O — едва ли не самую простую и всем известную формулу. Что она означает? Она говорит нам, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Химик, глядя на эту формулу, сразу же представляет себе, что атомы молекулы воды расположены так, что угол между направлениями связей Н — О и О — Н должен быть около 105°, а расстояния между атомами водорода и кислородом составляют по 0,96 × 10-8 см — чуть менее одной стомиллионной доли сантиметра. Конечно, вывести эти факты из каких-то простых принципов мы не сможем; они являются частью накопленных химиками знаний о строении молекул. Их и вспоминает химик, когда смотрит на формулу Н2O. Формула, приведенная на рис. III[238], по сравнению с формулой Н2O отражает свойства молекулы воды полнее и поэтому выглядит гораздо более содержательным символом.


Рис. III. Модель молекулы воды, Н2O.


Но и он не совсем точен. Мы знаем, например, что каждый атом занимает определенный объем. Правда, современная физика учит, что каждый атом похож на миниатюрную солнечную систему, в которой крошечное положительно заряженное ядро окружено облаком отрицательно заряженных электронов. Казалось бы, атомы должны быть в значительной степени «пустыми». И, тем не менее, два атома не могут подойти друг к другу ближе, чем позволяют их электронные облака, поскольку между ними возникает электрическое отталкивание. На практике часто удобно считать, что атомы, как правило, ведут себя подобно твердым бильярдным шарам.

Еще один общепринятый способ изображения молекул состоит в том, что атомы на этой модели специально сделаны поменьше, чтобы можно было видеть связи между ними. Каждый атом характеризуется определенным числом связей со своими соседями; химики называют их валентными связями. По сравнению с предыдущими эти модели обладают тем преимуществом, что позволяют видеть, как выглядит молекула внутри, что особенно важно для сложных молекул. В частности, те сложные молекулы, о которых мы здесь рассказываем, очень часто изображают именно таким образом.

Итак, перед нами четыре различных способа изображения молекулы воды, и каждый из них имеет свои преимущества.

Теперь рассмотрим несколько более сложный пример. В состав природного газа входит метан, который имеет формулу СН4. Формула подсказывает химику, что в молекуле метана с одним атомом углерода связаны четыре атома водорода. Следовательно, эту молекулу можно представить таким образом:



В действительности молекула метана выглядит иначе. Известно, что четыре валентные связи атома углерода не лежат в одной плоскости. Они идут в направлениях от центра тетраэдра к его вершинам. Эта модель ближе к реальности хотя бы потому, что дает нам трехмерный образ молекулы, чего обычная формула дать не в состоянии.

Допустим теперь, что мы убрали из молекул метана один атом водорода и вместо него к оставшейся СН3-группе присоединили еще такую же СН3-группу. Мы получаем молекулу СН3СН3 или С2Н6:



Этот этан, который, подобно метану, представляет собой газообразное соединение. Мы можем продолжать отщепление атомов водорода с заменой их на СН3-группы. Постепенно мы может построить длинную цепь атомов.

Углерод образует длинные цепи легче, чем все другие атомы, — в этом одна из причин того, что на него приходится значительная часть состава всех гигантских молекул, рассматриваемых в этой книге, и вообще большинства молекул, составляющих живые организмы. Возвращаясь к нашему примеру, мы видим, что в конце концов у нас получаются молекулы с общей формулой СН3СН2СН2… СН3. Мы можем выстроит в ряд сколько угодно СН2-групп, а затем на другом конце поместить последнюю СН3-группу, после чего будут насыщены все валентные связи:



Этот тип молекул известен химикам под названием парафинов. Если такая молекула содержит только один атом углерода, мы получаем метан. Когда их станет четыре, получится бутан, которым обычно заправляют газовые зажигалки. Увеличим число атомов углерода до восьми и получим жидкий октан — он входит в состав бензина для автомобилей и самолетов. Будем так продолжать, пока не наберется уже порядочное число атомов углерода (скажем, около двадцати); тогда получим тяжелое смазочное масло. Дальнейшее добавление СН2-групп сначала даст что-нибудь вроде вазелина, и, в конце концов, очередь дойдет до твердых тел, таких, как парафин.

Как видите, по мере прибавления атомов углерода происходит постепенное изменение свойств молекул: сначала это газы, потом сильно летучие жидкости, далее жидкости становятся все более вязкими и, в конце концов, появляются твердые вещества.

Мы рассмотрели простейший из возможных примеров молекул с длинной цепью, иначе называемых полимерами. Этот пример служит наглядной иллюстрацией того, как с увеличением длины цепи постепенно изменяются свойства молекул. Можно привести много других хорошо известных примеров. Вспомним каучук и такие синтетические материалы, как нейлон и терилен, — все эти продукты также образованы длинными цепными молекулами. Если же вновь вернуться к биологии, то оказывается, что почти все гигантские молекулы, входящие в состав живых организмов, представляют собой полимеры. В частности, к ним относятся белки и нуклеиновые кислоты. К слову говоря, жиры и углеводы, которым мы в этой книге уделяем меньше внимания, построены по тому же плану. Невольно возникает вопрос: почему биологические молекулы имеют вид длинных цепей? Мы еще вернемся к этому позднее.

Надо сказать, что большие биологические молекулы, представшие теперь перед нами как длинные цепи атомов, чаще всего имеют форму, близкую к сферической. Следовательно, в большинстве случаев речь идет о компактно сложенных цепях. Очевидно, свернуть длинную цепь в плотный клубок можно многими разными способами.

Для наглядности представим себе нашу длинную молекулу в виде ожерелья из плотно нанизанных бусинок. Как легко видеть, свернуть эту нитку бус в плотный комок можно практически бесконечным числом различных способов. Поэтому, даже несмотря на то, что такие молекулы в определенном смысле линейны, понять их структуру можно только рассматривая их как трехмерные объекты. Трехмерная структура длинных цепных молекул служит предметом обсуждения следующей главы. А пока продолжим знакомство с белками, только для начала ограничимся одним измерением.

В цепях парафинов элементарным звеном — мономером — служит молекула метана СН4. В белках роль мономеров исполняют более сходные молекулы, которые химики назвали аминокислотами. Все аминокислоты различны, но в то же время между ними имеется близкое сходство (рис. IV).


Рис. IV. Химические формулы некоторых аминокислот. На этом рисунке приведены полные и сокращенные названия аминокислот.


Легко заметить, что у всех аминокислот одна часть молекулы выглядит совершенно одинаково (на рисунке эта часть располагается вверху). Другая часть (обращена вниз) у разных аминокислот имеет совсем разный вид. Ее называют боковой цепью.

Когда аминокислоты соединяются друг с другом, каждая аминокислота теряет расположенный слева атом водорода и ОН-группу, находящуюся на ее правом конце. Свободные валентности «встречаются», аминокислоты связываются, и в результате образуется так называемая полипептидная цепь (рис. V).


Рис. V. Образование полипептидной цепи, происходящее в результате отщепления воды от групп — СООН и — NH2 соседних аминокислот.


Атом Н и ОН-группа вместе образуют молекулу воды. Вы видите теперь, что сама цепь, или, как ее называют, главная цепь, состоит из повторяющихся элементов, число которых соответствует числу аминокислот. Это и понятно — ведь в построении цепи участвуют как раз те части молекул, которые во всех аминокислотах одинаковы. С другой стороны, боковые цепи следуют друг за другом, не повторяясь, так как разным аминокислотам соответствуют разные боковые цепи. Все это слегка напоминает браслеты с брелоками, которые иногда носят девушки. Мы можем сам браслет уподобить главной цепи, а брелоки сравнить с боковыми цепями. К длинному браслету может быть подвешено довольно много разных брелоков. В молекулах белков возможно двадцать (и только двадцать) различных сортов боковых цепей, причем данный вид боковых цепей в одной молекуле обычно встречается более одного раза, так как в общей сложности молекула белка обычно содержит по несколько сотен аминокислот.

Итак, мы знаем теперь, что белки представляют собой полимеры аминокислот, обладающие очень длинными цепями, скрепленными сотнями связей.

Пожалуй, достаточно о химии белка. Теперь давайте попробуем разобраться, почему белки так важны в биологии. Вернемся снова к последовательности химических реакций в дрожжевой клетке, о которой упоминалось в предыдущей главе. Ни одна из этих реакций в пробирке не идет, а если и идет, то очень медленно — во много раз медленнее, чем в живых организмах. Значит, в живых организмах должен присутствовать какой-то агент, ускоряющий химические реакции, заставляющий их идти во много раз быстрее, чем в пробирке. Такие агенты называются катализаторами. Возможно, вы слышали о катализаторах, которые используются в промышленности для ускорения медленно протекающих химических реакций. Подобную же роль играют катализаторы в живых организмах. Эти биологические катализаторы, называемые ферментами (от латинского слова fermentum — брожение), во многих случаях были выделены биохимиками в чистом виде. Одним из первых процессов брожения было изучено спиртовое брожение под действием дрожжей. Было установлено, что каждой отдельной реакции этого процесса соответствует свой фермент. Следовательно, только одну эту цепь реакций обслуживает около дюжины ферментов. Все эти ферменты высокоспецифичны. Каждый из них может служить катализатором только своей реакции и никакой другой. Более того, они вызывают специфическое превращение только строго определенного вида молекул. Если молекулу слегка изменить, то фермент чаще всего вообще не оказывает на нее никакого действия.

Итак, взятая нами для примера последовательность химических реакций идет при участии дюжины ферментов. Однако эти реакции составляют лишь очень малую часть всей химической активности дрожжевой клетки. И почти каждая протекающая в клетке химическая реакция идет под контролем своего специально предназначенного для нее фермента. Всего живая клетка содержит несколько тысяч разных ферментов; каждый из них осуществляет контроль над одной определенной химической реакцией, заставляя ее идти быстрее. Следовательно, ферменты представляют собой настоящий рабочий механизм живой клетки. Продолжая нашу аналогию с фабрикой, мы можем сравнить их с работающими на фабрике станками и машинами. Как видите, ферменты в клетке выполняют поистине центральную роль. Если к этому добавить, что все известные нам ферменты — белки, то станет ясно, что на пути к познанию процессов, идущих в живых организмах, нам в первую очередь необходимо понять, как устроены белки и каковы их функции в живой клетке.

Рассмотрим ряд примеров. Думаю, что многие из них читателю знакомы. Начнем, конечно, с фермента. Когда делают сыр, в молоко добавляют специальный порошок, после чего оно тут же свертывается. Этот порошок содержит фермент, который вырабатывается пищеварительным аппаратом теленка и вызывает свертывание молока. В сыроварении его называют сычужным ферментом, биохимики же называют его реннином. Другой известный белок — кератин. Мы уже говорили, что волосы состоят большей частью из белка; вот этот белок и называется кератином. Он выполняет структурную функцию. Надо сказать, что из белка построены также многие другие органы, выполняющие структурную функцию. Так, основным компонентом сухожилий, костей и кожи служит белок коллаген.

Возьмем теперь гемоглобин — белок, с которым мы не раз еще встретимся. Присутствием гемоглобина обусловлен красный цвет крови. Функция этого белка состоит в том, чтобы переносить кислород из легких к тканям. Гемоглобин обладает замечательной способностью связывать молекулярный кислород. Точнее говоря, одна молекула гемоглобина может связать одновременно четыре молекулы кислорода. В легких, где давление кислорода выше, происходит присоединение молекул кислорода к гемоглобину. Гемоглобин доставляет их к тканям, но там давление ниже, и кислород освобождается. Далее происходит диффузия кислорода внутрь клеток. В клетке молекулы кислорода встречаются с другим белком — миоглобином, о котором мы тоже еще не раз услышим. Миоглобин — это как бы младший брат гемоглобина, его молекула в четыре раза меньше и способна связывать не четыре, а только одну молекулу кислорода. Миоглобин тоже красный; этим объясняется красный цвет мяса. Молекулы кислорода переходят от гемоглобина к миоглобину, где и хранятся до тех пор, пока не потребуются клетке.

Еще один важный белок — миозин мышц, обладающий замечательным свойством — сократительностью. Именно благодаря миозиновым волокнам мышцы способны сокращаться. Механизм мышечного сокращения представляет собой одну из центральных и наиболее захватывающих проблем биологии, еще далекую от полного решения.

И последний пример: к белкам относятся некоторые гормоны — химические переносчики, предназначенные для регуляции клеточных процессов. Одним из таких белков-гормонов является инсулин.

Как видите, молекулы белков выполняют великое множество самых различных функций, хотя все они построены из одинаковых строительных блоков — все тех же двадцати аминокислот. Одни и те же строительные блоки в разных комбинациях образуют молекулы, обладающие столь разнообразными свойствами и функциями. На первый взгляд может показаться удивительным, что такое разнообразие функций возникает на основе всего лишь двадцати сортов аминокислот. Но это во всяком случае ничуть не более удивительно, чем тот факт, что из одних и тех же двадцати шести букв английского алфавита могут быть сложены и сонет Шекспира, и, скажем, книга по молекулярной биологии.

Вообще говоря, белки почти целиком состоят из аминокислот, но для большей точности отметим, что некоторые белки содержат кроме того еще и другие небольшие группы атомов. Например, в молекулах гемоглобина и миоглобина присутствуют плоские группы атомов с атомом железа в центре — так называемые гемогруппы, к которым прикрепляются молекулы кислорода. В молекуле гемоглобина таких групп четыре, а в молекуле миоглобина только одна.

Роль белков в живых клетках столь значительна, столь важна, что без преувеличения можно сказать: природа любой живой клетки определяется главным образом белками, которые она содержит. Но тогда верно и то, что природа живого организма в целом в конечном счете определяется его белками.

Следовательно, для того чтобы понять, как устроен и как работает живой организм, нам необходимо постичь природу белков и их функции в составляющих организм клетках. А если нас интересует взаимосвязь между разными организмами, то мы должны понять связь между белками, которые они содержат. Это подводит нас к проблеме видовой специфичности белков. Иначе говоря, для каждого вида характерны специфические, одному ему свойственные, молекулы белков, одинаковые у всех представителей данного вида; при этом у разных видов молекулы белка, выполняющие одни и те же функции, не идентичны.

Так, например, можно смело утверждать, что все те, кто читает эту книгу, имеют совершенно идентичный гемоглобин, абсолютно одинаковый вплоть до каждой аминокислоты, буквально до последнего атома. Очень редко, но все же случается, что у людей обнаруживается аномальный гемоглобин, однако обычно это ведет к достаточно серьезным заболеваниям, таким, например, как серповидноклеточная анемия. В таких случаях все сводится к очень простым изменениям: при серповидноклеточной анемии измененными оказываются только две из почти шестисот аминокислот, составляющих молекулу гемоглобина. Вот почему я так уверен, что у всех моих читателей молекулы гемоглобина одинаковы. Люди с аномальным гемоглобином — это, как правило, тяжелобольные, которые рано умирают; лишь самые незначительные изменения гемоглобина могут сойти для человека благополучно.

Если мы теперь обратимся к другому виду и возьмем, к примеру, гемоглобин лошади или коровы, то обнаружим, что он, казалось бы, почти ничем не отличается от гемоглобина человека. Он имеет тот же цвет, те же размеры и выполняет в организме те же функции. Однако, как показывает тонкий химический анализ, между гемоглобинами человека, лошади и коровы имеются ощутимые различия — их наборы аминокислот неодинаковы. Это мы и имели в виду, когда говорили о видовой специфичности. Может даже оказаться, что подобные различия в белках создают гораздо более глубокую основу для классификации животных и растений, чем внешние характеристики, — окраска, форма и другие признаки, которые только и имел Линней в своем распоряжении.

В следующей главе мы продолжим разговор о химии молекул белка — рассмотрим более подробно, сколько и какие именно аминокислоты составляют те или иные белки, в каком порядке они располагаются в полипептидной цепи, а также обсудим, каким образом химики научились определять последовательность аминокислот в различных белках. Однако мы вскоре увидим, что одной последовательности аминокислот нам недостаточно. Чтобы понять функции белка, необходимо точно знать способ свертывания полипептидной цепи в плотный клубок. Мы узнаем далее, как здесь на помощь химикам пришли физики, разработавшие специальные методы для изучения больших молекул не в одном, а в трех измерениях.


Глава 5Процесс размножения и генетика

В предшествующих главах мы рассматривали вопросы, связанные с молекулярной основой обмена веществ в клетках — той непрекращающейся химической активности, которая служит одним из отличительных признаков жизни. Но у живых организмов есть еще одна способность к самовоспроизведению. В последующих главах мы постараемся показать, какой свет на этот удивительный процесс проливают последние достижения молекулярной биологии.

Размножение бывает двух типов: половое и бесполое. Бесполое размножение происходит всякий раз, когда клетки делятся. В качестве примера можно привести рост любого многоклеточного организма. Одноклеточные организмы, скажем, бактерии, довольно часто размножаются делением. Половое размножение происходит путем слияния двух клеток — по одной от каждого родительского организма. Как мы все знаем, это происходит при оплодотворении яйцеклетки сперматозоидом. Конечно, эти два способа воспроизведения во многих отношениях отличаются друг от друга, но мы пока не касаемся различий. Рассмотрим оба способа с точки зрения передачи информации, как теперь принято. Дочерняя клетка должна получить от родительской клетки (или от двух клеток) информацию, которая позволит ей путем взаимодействия с окружающей средой вырасти в заранее предопределенный организм. Количество переданной информации должно быть невероятно велико: даже одна-единственная клетка отличается огромной сложностью и для построения самой себя требует максимально подробных и тщательно разработанных инструкций. Мало того, что информации должно быть много, — она еще должна быть исключительно специфичной, поскольку необходимо сохранение чистоты рода; попросту говоря, человек всегда должен порождать человека, бабочка — бабочку и т. д.

Проводя такую цепь рассуждений, мы сразу оказываемся перед целым рядом проблем: где в клетке хранится вся эта информация? Где напечатаны те инструкции, копии которых будут переданы последующим поколениям? В каком виде информация передается потомству и как она управляет построением новых клеток? Эти проблемы издавна не давали покоя мыслителям и ученым. Было предложено немало гипотез, ставивших своей целью объяснить ту удивительную цепь событий, которая приводит к появлению из одной оплодотворенной яйцеклетки такого высокоразвитого создания, каким является человек. Например, многие биологи прежних времен считали, что в каждом сперматозоиде заключен гомункулус — миниатюрная копия того человека, который из этого сперматозоида разовьется. В наши дни, когда биологи вооружены гораздо более совершенными приборами, в том числе современными микроскопами, умозрительные построения уступили место анализу реальных наблюдений, касающихся состава клеток и их поведения.

Наиболее заметной частью клетки является ядро — плотная центральная область, ограниченная от окружающей цитоплазмы. Чем больше биологи исследовали клетку, тем яснее для них становилась ключевая роль ядра, управляющего всей жизнью клетки. Уберите ядро из клетки (это можно сделать с помощью микроманипулятора), и прекращаются все внутриклеточные процессы. Если ядро не вернуть назад, клетка, в конце концов, погибает. У некоторых видов одноклеточных организмов удается даже заменить одно ядро другим, взятым у другого вида, и вскоре первая клетка приобретает признаки, характерные для второго организма. Итак, мы видим, что ядро существенно для поддержания клеточной активности и, кроме того, им определяются все признаки, характеризующие данную клетку. Мы можем рассматривать ядро как орган управления, содержащий всю информацию о клетке.

Прежде чем клетка разделится, ее ядро расщепляется на два дочерних ядра; делению ядра предшествует стадия, на которой оно распадается на ряд длинных, тонких, палочковидных структур различной формы и величины — так называемых хромосом. Хромосомы выстраиваются парами — по две хромосомы каждого сорта — и расходятся, после чего члены каждой пары движутся к противоположным концам клетки, где формируются два новых ядра, которые вскоре уже становятся частью двух дочерних клеток. Проходит какое-то время, и набор хромосом каждого дочернего ядра удваивается в процессе подготовки к следующему делению. В конечном счете каждая дочерняя клетка содержит полный набор хромосом, точно соответствующий набору хромосом родительской клетки.

Постепенно выяснилось, что именно хромосомы несут в себе ту информацию, которая переходит от клетки к клетке, от поколения к поколению. Этот вывод основывается на множестве разнообразных экспериментов, выполненных на всех возможных видах организмов. Например, в течение последнего полувека многочисленные исследования были проведены на крохотном насекомом — плодовой мушке дрозофиле (Drosophila melanogaster). По целому ряду причин этот вид стал излюбленным объектом генетических исследований. Дрозофил легко выращивать, они быстро достигают половой зрелости, что позволяет за сравнительно короткое время изучить большое число поколений. Клетки дрозофилы содержат небольшое число хромосом (вообще говоря, число хромосом у разных видов организмов неодинаково: у дрозофилы их 4 пары, у человека 23 пары), причем в некоторых клетках дрозофилы хромосомы настолько велики, что их можно подробно изучить с помощью микроскопа. Хромосомы дрозофилы обнаруживают характерное чередование светлых и темных поперечных полос. Генетикам удалось установить соответствие между признаками организма и определенными участками хромосомы; было показано, что изменение специфического характера чередования полос всегда сопровождается изменением определенных внешних признаков дрозофилы. Соответствие между отдельными участками хромосом и признаками организма, или, как говорят генетики, соответствие между генотипом и фенотипом обычно изображается в виде так называемых хромосомных карт.

Мы приходим, таким образом, к мысли, что элемент наследственной информации, ответственный за данный признак взрослого организма, располагается в определенном участке определенной хромосомы. Такой элемент информации называется геном; если угодно, мы можем рассматривать хромосому просто как цепочку генов. Как же ген контролирует появление соответствующего признака? Мы знаем, что свойства клетки определяются природой ферментов и других белков, входящих в ее состав. Поэтому нам уже не покажется удивительным, что всем известным фактам лучше других соответствует гипотеза, согласно которой гены выполняют свои функции, контролируя синтез ферментов и других белков. Если по какой-то причине изменится ген, то должен измениться и белок, синтезом которого он управляет. Это знаменитая гипотеза «один ген — один фермент». Она утверждает, что каждый ген управляет синтезом одного определенного фермента, а контроль генотипа над фенотипом осуществляется через контроль структуры ферментов со стороны отдельных генов.

До сих пор, обсуждая генетические проблемы, мы говорили о структурах, которые видны в микроскоп. Для молекулярной биологии это не годится — мы ведь стремимся к тому, чтобы понять поведение живых организмов на молекулярном уровне. Поэтому теперь мы должны задать себе такой вопрос: а что же представляет собой ген на молекулярном уровне?

Если гены действительно составлены из молекул, то можно предсказать, какими свойствами должны обладать эти молекулы. Во-первых, они должны обладать способностью к самовоспроизведению, причем необычайно точному. Впрочем, точность эта не должна быть абсолютной, поскольку мы считаем, что изменчивость растений и животных, лежащая в основе происхождения новых видов, объясняется как раз случайными ошибками в самовоспроизведении гена — так называемыми мутациями. Во-вторых, интересующие нас молекулы должны играть роль хранителей информации. В-третьих, они должны обладать способностью использовать эту информацию для прямого или косвенного управления синтезом ферментов. Иными словами, здесь должно быть что-то вроде телеграфной ленты, которая поступает в телетайп и превращается в письменное сообщение. Итак, у молекул, которые мы ищем, оказывается много вполне четких примет.

Поскольку гены являются частью хромосом, то для начала не мешало бы разузнать, что известно насчет химического состава хромосом. Как показали химики, хромосомы состоят главным образом из белков и нуклеиновых кислот. Очевидно, среди этих соединений и следует искать кандидатов на роль способных к самовоспроизведению хранителей информации. Химию белков мы уже обсуждали, а вот о нуклеиновых кислотах речи пока что не было. Давайте теперь и им посвятим немного времени.

Прежде всего, нуклеиновые кислоты, подобно белкам, имеют очень большие молекулы, часто они намного больше молекул белков. Во-вторых, молекулы нуклеиновых кислот, как и молекулы белков, имеют вид длинных цепей. Но на этом сходство кончается, поскольку в цепях нуклеиновых кислот роль элементарных звеньев выполняют не аминокислоты, а так называемые нуклеотиды, совсем на аминокислоты не похожие. Каждый нуклеотид состоит из трех частей: из молекулы сахара, фосфатной группы и еще одной довольно сложной группы, которую химики называют азотистым основанием. Эти основания бывают двух сортов — пуриновые и пиримидиновые. Существует несколько видов нуклеиновых кислот, нам же нужна та, которая входит в состав хромосом. Ее полное химическое наименование звучит несколько громоздко — дезоксирибонуклеиновая кислота. Поэтому гораздо легче привилось сокращенное название ДНК. Фосфатная и сахарная группы, чередуясь, образуют главную цепь, от которой в разные стороны отходят пуриновые или пиримидиновые основания. Пуриновые основания могут быть двух сортов — либо аденин, либо гуанин; точно так же имеется два сорта пиримидиновых оснований — цитозин и тимин. Запоминать эти названия совсем не обязательно. Нужно только знать, что всего существует четыре сорта оснований, которые можно обозначить просто начальными буквами их названий — А (аденин), Г (гуанин), Ц (цитозин) и Т (тимин). Относительно структуры оснований заметим только, что пурины (А и Г) больше по размеру — их молекулы содержат две кольцевые группы атомов, пиримидины (Ц и Т) меньше и содержат только по одному кольцу.

Для химиков изучение нуклеиновых кислот всегда было делом нелегким. Много трудностей связано с очисткой. Необычайно длинные молекулы нуклеиновых кислот разламываются на куски даже при простом перемешивании раствора. Если же принять во внимание, что одна молекула может содержать тысячи или даже миллионы атомов, то становится ясно, что точный химической анализ таких молекул представляет задачу невероятно сложную. Более или менее подходящие методы химического анализа нуклеиновых кислот появились совсем недавно, а прежние методы давали результаты, весьма далекие от истины. Так, например, когда я еще учился в школе, нам говорили, что четыре вида оснований встречаются в нуклеиновых кислотах в равных количествах, т. е. в отношении 1:1:1:1. Теперь же точно установлено, что это совершенно не так.

Определенно можно сказать, что в те далекие времена — а для молекулярной биологии тридцатые годы это вообще времена доисторические — ДНК казалась весьма неподходящим кандидатом на роль носителя биологической информации. Судя по первым анализам, это была довольно «тупая» молекула, в которой четыре основания, представленные в равных количествах, повторялись вдоль цепи в неизменной последовательности. Многие думали тогда, что ДНК служит всего-навсего подпоркой для хромосомного белка. Сам белок считался куда более подходящим претендентом на роль носителя информации: почти нигде не повторяющаяся последовательность из двадцати разных аминокислот великолепно могла бы хранить в себе соответствующим образом закодированную информацию.

И вдруг этим воззрениям, которых придерживались большинство биологов, наносится неожиданный удар. Именно так можно расценить результаты экспериментов, выполненных в середине сороковых годов [XX в.] и относящихся к странному явлению, названному трансформацией бактерий. Эти эксперименты показали, что наследственность многих микроорганизмов, в частности пневмококков (возбудителей пневмонии), может изменяться под действием ДНК. Проще говоря, сделали вот что: из определенного вида пневмококков, которую мы условно назовем штаммом А, вывели чистую нуклеиновую кислоту и стали смотреть, как она воздействует на клетки пневмококков другого штамма — штамма В. Итак, ДНК штамма А проникла в клетки бактерий штамма В — и тут произошло настоящее чудо! Оказалось, что потомство бактерий штамма В и все последующие поколения превратились в бактерии штамма А. Другими словами, наследственные признаки организма можно при желании изменить, вводя ему химически чистую ДНК другого организма, не содержащую — и это особенно важно — никаких примесей белка. Отсюда следует, что, по крайней мере, у бактерий именно ДНК ответственна за передачу наследственной информации. Все более поздние работы показали, что то же самое верно и для других организмов; носителем информации в живых клетках неизменно оказывается ДНК[239].

Этот замечательный эксперимент и другие аналогичные эксперименты сконцентрировали внимание исследователей на ДНК. Не последнюю роль они сыграли и в судьбе двух моих коллег, Джима Уотсона и Фрэнсиса Крика, тоже увлекшихся проблемой ДНК. Подобно тому, как солнечные лучи, если их сфокусировать, могут вызвать пожар, так и эта фокусировка интереса исследователей на ДНК также привела, фигурально выражаясь, к пожару, преобразившему всю биологию.

В этой главе мы рассказали о том, как биологи, в конце концов, пришли к открытию роли нуклеиновых кислот, которые в живых клетках служат хранителями информации, передаваемой из поколения в поколение, от родителей к потомству. Как только эта роль нуклеиновых кислот прояснилась, возникла насущная потребность в изучении структуры нуклеиновых кислот, которая, возможно, помогла бы понять, как нуклеиновые кислоты выполняют свои три важнейшие функции: самовоспроизведение, хранение информации и реализацию этой информации в процессе роста новых клеток.


Глава 6Нуклеиновые кислоты — молекулы наследственности

В главе 5 мы установили, что наследственная информация, хранящаяся в каждой клетке и передаваемая от поколения к поколению, заключена в клеточном ядре, в хромосомах. Элементы информации, ответственные каждый за синтез одного определенного белка, называются генами. Хромосомы состоят из белка и нуклеиновой кислоты (ДНК), но непосредственным носителем информации служат только ДНК. Мы познакомились с химической формулой ДНК: молекула ДНК представляет собой длинную цепь чередующихся сахарных и фосфатных групп, причем к каждой сахарной группе прикреплена еще боковая цепь — одно из четырех возможных оснований. Точно так же, как химическая формула белка мало что говорит о его функции, так и формула нуклеиновой кислоты представляет собой недостаточно полный символ, по которому нельзя судить, как проходит самовоспроизведение ДНК и как хранится информация.

И снова, как и раньше, естественным образом возникает вопрос: каково же взаимное пространственное расположение атомов в молекуле ДНК? Здесь опять-таки приходится обращаться за помощью к рентгеновской кристаллографии. В волокнах очищенной ДНК длинные молекулы ориентированы, как стебельки в пучке соломы. Примерно так же упакованы длинные тонкие молекулы кератина волос. Значит, если волокно ДНК поместить на пути пучка рентгеновских лучей, то должна получиться рентгенограмма, сходная по характеру с рентгенограммой волоса. Первая рентгенограмма ДНК была получена Астбюри в середине тридцатых годов [ХХ в.]. Снимок получился сильно размытым. Конечно, определить по такому снимку структуру ДНК — задача совершенно безнадежная. Тем не менее, и сам Астбюри, и другие исследователи пытались это сделать. И хотя некоторые из них (особенно Астбюри), как потом выяснилось, находились на верном пути, сделанные ими выводы были неубедительны, и проблема долгие годы оставалась нерешенной.

Так продолжалось до начала пятидесятых годов. Примерно к этому времени относятся два очень важных экспериментальных достижения, заставивших совсем по-иному смотреть на структуру и роль ДНК.

Первое из них связано с именем Э. Чаргаффа. Вы помните, что тогда почти ничего не знали о количественном соотношении между основаниями, входящими в состав ДНК; считалось даже, что они представлены в равном количестве. Заслуга Чаргаффа состоит в том, что он первый получил по-настоящему чистые образцы ДНК и сделал очень аккуратный анализ относительного числа оснований в каждом образце. Он обнаружил, что процентное содержание четырех оснований — А, Г, Ц и Т — от вида к виду довольно сильно меняется, так что, вообще говоря, содержание в ДНК разных оснований далеко не одинаково. Кроме того, были открыты две весьма замечательные закономерности, которые вместе составляют так называемые правила спаривания оснований (правила Чаргаффа): из какого бы организма ни была выделена ДНК и как бы сильно процентный состав оснований ни отличался от предполагавшегося ранее отношения 1:1:1:1:1, количество А всегда равно количеству Т, а количество Г — количеству Ц. Вы, должно быть, помните, что А и Г — это пурины, содержащие два кольца атомов, а Ц и Т — пиримидины, содержащие по одному кольцу. Следовательно, равными оказываются количества «больших» и «малых» оснований: число А («большие» основания) равно числу Т («малые» основания); число Г («большие») равно числу Ц («малые»). В то время открытые закономерности были необъяснимы, но в конечном счете именно они послужили ключом к разгадке структуры ДНК.

Вторым не менее важным достижением мы обязаны М. Уилкинсу и Р. Франклин совместно с их сотрудниками. Им удалось сильно повысить качество рентгенограмм, получаемых от волокон ДНК. В этом вы сами можете легко убедиться. Сходство двух рентгенограмм не вызывает сомнений, но на новом снимке на месте размытых пятен имеется много четких рефлексов. С таким снимком кристаллографы вполне согласятся работать.

Таковы были эти новые экспериментальные факты. Ими блестяще воспользовались Дж. Уотсон и Ф. Крик. Уотсон, которому в ту пору (1953 г.) было только 24 года, приехал из Америки в Кембридж, в нашу лабораторию, и должен был вместе со мной заниматься изучением структуры белка. Но белком он так почти и не занимался. Как он сам первый признал, это была для него чересчур тяжелая работа. Я, конечно, на этом потерял, но зато много выиграла биология в целом. Крик приехал в нашу лабораторию чуть раньше, и они с Уотсоном подолгу беседовали о том, как важно было бы расшифровать структуру ДНК. Они разглядывали последние рентгенограммы ДНК, обсуждали возможный смысл открытых Чаргаффом правил спаривания оснований, перепробовали чуть ли не все возможные виды моделей. В результате по прошествии всего нескольких недель после одной-двух неудачных попыток разгадка по существу была уже готова! Я даже затрудняюсь объяснить, как они ее нашли, — по-моему, и сами они едва ли смогли бы объяснить. Это было одно из тех прозрений, которые время от времени случаются в науке. Вы можете называть это гениальностью, вдохновеньем, как хотите. Одно можно сказать: до 1953 года такое прозрение было бы невозможно, поскольку оно целиком зависело от открытия правил спаривания оснований, а также от информации, содержащейся в улучшенных рентгенограммах. Но, как только все эти сведения были добыты, ответ удалось найти в поразительно короткий срок.

Модель структуры ДНК, построенная Уостсоном и Криком, — это двойная спираль; как показано на модели, молекулы ДНК состоят из двух цепей, идущих в противоположных направлениях и закрученных одна вокруг другой наподобие электрических проводов. В результате получается структура, немного напоминающая винтовую лестницу (рис. IX).


Рис. IX. Структура одноцепочной дезоксирибонуклеиновой кислоты (ДНК):

Главная цепь (остов) ограничена двумя волнистыми линиями. Вправо отходят боковые цепи. Всего возможны четыре разновидности боковых цепей, которые чередуются в совершенно нерегулярной последовательности. Watson J. D. Molecular Biology of the Gene, New York, Benjamin, Inc., 1965, p. 91 (Дж. Уотсон, Молекулярная биология гена, «Мир», М., 1967).


Ступеньками ее служат пары оснований, скрепленных теми же слабыми водородными связями, с которыми мы уже встречались в альфа-спирали — там, где речь шла о структуре белка. Наиболее существенно в структуре ДНК то, что каждая пара оснований, составляющая ступеньку, обязательно содержит одно большое и одно малое основания, так что встречаются только пары А-Т и Г-Ц. Ступенька не может состоять из двух малых оснований, скажем из Т и Ц, двух Т или двух Ц, так как они не достанут до середины и не смогут соединиться водородной связью. Не может она состоять и из двух больших оснований — А и Г, А и А или Г и Г — не хватит места. Нельзя соединить в пары также А с Ц или Г с Т — это невозможно просто потому, что их химическая структура исключает возможность образования подходящих водородных связей. Таким образом, правила Чаргаффа получают простое объяснение, исходя из структуры: на каждой ступеньке должна быть либо пара А-Т, либо пара Г-Ц, и, следовательно, общее число А должно равняться общему числу Т, а число всех Г — числу всех Ц. Объяснение получилось настолько естественным, что каждый, кто знакомится с деталями предложенной структуры, а в особенности кристаллографы и химики-структурщики, у которых уже наметан глаз на такого типа модели, сразу получают полное удовлетворение. Возникает такое ощущение, будто иначе и не может быть.

Имея в руках модель, подобную двойной спирали Уотсона-Крика, вы можете проверять ее тысячами способов. Вы можете рассчитать, какую она должна давать рентгенограмму, и сравнить, насколько результат соответствует экспериментально полученной рентгенограмме. Используя метод проб и ошибок, Уотсон и Крик впоследствии слегка изменили свою модель и получили достаточно удовлетворительное соответствие с данными рентгеноструктурного анализа, а позднее Уилкинс внес еще кое-какие уточнения, так что теперь соответствие просто превосходное. Но ни одна из внесенных поправок не нарушила великой простоты первоначальной модели. Структура Уитсона-Крика подтверждена теперь во всех подробностях, и мы можем быть совершенно уверены, что в волокнах ДНК расположение цепей носит точно такой характер.

Однако ДНК в волокнах совсем не обязательно должна быть тем же, чем она является в живых клетках. Заранее нельзя сказать, что структура, однозначно установленная для ДНК внутри волокон, описывает состояние молекул ДНК в их биологическом окружении. В последние несколько лет многие биохимики и физико-химики изучали ДНК уже непосредственно в живых клетках, такой, как она есть. За недостатком места мы не будем описывать все эти методы. Скажу только результат: установлено, что обычно в живой клетке ДНК тоже присутствует в виде двойной спирали.

В наши дни электронный микроскоп позволяет непосредственно рассмотреть отдельные молекулы ДНК. Можно видеть короткий участок молекулы ДНК, имеющий в поперечнике две десятимиллионные доли сантиметра. Вот она, настоящая нить жизни. В том, что это действительно так, мы не замедлим убедиться. Сразу же возникает вопрос: каким образом она выполняет свою главную функцию — самовоспроизведение; каким образом получается, что после деления в каждой из дочерних клеток ДНК оказывается идентичной ДНК родительской клетки? Уотсон и Крик предложили смелую и вместе с тем очень простую гипотезу. Они допустили, что спираль ДНК расплетается на две одиночные цепи, а затем из нуклеотидов, свободно плавающих в клетке, формируется вдоль каждой цепи еще одна цепь, причем основания, соединяющиеся с основаниями старой цепи, подбираются в соответствии с правилами Чаргаффа. Легко видеть, что в конечном счете будут построены две одинаковые двойные спирали, идентичные первоначальной (рис. X).


Схема репликации ДНК, согласно Уотсону-Крику:

Двойная спираль (в верхней части рисунка) раскручивается, и одновременно вокруг каждой из двух цепей исходной молекулы ДНК формируются новые цепи (внизу). В результате образуются две двойные спирали согласно правилам спаривания оснований, так что новые двойные спирали имеют ту же последовательность оснований, что и исходная молекула ДНК.


Этот процесс можно сравнить с печатанием фотокарточек с негатива. Различие здесь только в том, что в случае ДНК любую цепь можно рассматривать как «негатив» для другой, так что в этом смысле словно бы и нет разницы между позитивом и негативом. Совсем недавно с помощью электронного микроскопа удалось даже заснять ДНК в момент репликации.

Такова была гипотеза. Но биологи сразу заметили, что перед ней неизбежно встанет масса трудностей, проистекающих в первую очередь из громадной длины молекул ДНК. В одной клетке человека вся ДНК, распределенная в 46 хромосомах, содержит что-то около миллиарда пар оснований; ее полная длина достигает едва ли не метра. А если составить цепочку из ДНК всех клеток одного человека, то она, пожалуй, сможет протянуться через всю солнечную систему. И вот почти целый метр ДНК должен быть как-то свернут внутри одной клетки, размеры которой в поперечнике обычно составляют не более тысячной доли сантиметра. Если гипотеза Уотсона-Крика верна, то в процессе репликации вся эта ДНК должна быть раскручена на одиночные нити. Всякий, кто хотя бы раз пробовал расплести длинный шнур, состоящий из двух электрических проводов, сразу же поймет, почему биологи увидели здесь проблему: непонятно, что помешает еще до конца не расплетенной цепи спутаться в безнадежный клубок.

Поэтому было очень важно придумать такой решающий эксперимент, который мог бы служить проверкой предложенной гипотезы. Такой эксперимент задумали и успешно осуществили Меселсон и Сталь. Они выращивали определенный вид бактерий в искусственной среде, содержащей тяжелый азот (азот-15) — изотоп азота, атомы которого тяжелее атомов обычного азота (азот-14). Через некоторое время у этих бактерий весь азот в основаниях ДНК был представлен только тяжелым азотом. Как можно подсчитать, плотность такой ДНК должна почти на 1 % превышать плотность нормальной ДНК. Вырастив достаточное количество бактерий, содержащих тяжелую ДНК, Меселсон и Сталь переносили их на среду, содержащую обычный легкий азот (азот-14). На новой среде бактерии размножались путем деления, причем теперь для синтеза новой ДНК они могли использовать только легкий азот. Далее проводился анализ ДНК потомства. Что должно было получиться? Если гипотеза Уотсона-Крика верна, то в первом поколении потомство перенесенных бактерий должно содержать, так сказать, «полутяжелую» ДНК, которая легче, чем родительская, но тяжелее обычной, поскольку в каждом молекуле этой ДНК должна была присутствовать одна тяжелая и одна обычная цепь. Плотность такой ДНК должна примерно на 0,5 % превышать плотность нормальной ДНК. Выделенная ДНК будет представлять собой смесь ДНК двух плотностей. Половина всей ДНК должна иметь нормальную плотность, поскольку ее молекулы будут составлены из двух легких цепей, остальная ДНК будет «полутяжелой», т. е. содержащей по одной легкой и по одной тяжелой цепи.

Вот что предсказывает теория. А как проверить эти предсказания? Для этого надо найти чувствительный метод измерения плотности ДНК, который позволял бы обнаруживать различия в плотности ДНК, составляющие 0,5 или 1 %. Наиболее подходящим оказался метод градиентной колонки. Градиентная колонка — это колонка с жидкостью переменной плотности: на дне плотность жидкости наибольшая, на поверхности наименьшая. Если в такую колонку бросить какой-либо предмет, то он под действием силы тяжести будет погружаться в жидкость до тех пор, пока его средняя плотность не сравняется с плотностью непосредственно прилегающих к нему слоев жидкости. В принципе этим методом можно воспользоваться для того, чтобы отделить тяжелую ДНК от легкой: в колонке они должны располагаться на разной высоте. Но так как различия в плотности здесь очень малы, необходимо повысить чувствительность метода, насколько это возможно; на практике колонку переменой плотности создают путем быстрого вращения в центрифуге раствора какой-нибудь соли. Мы как бы создаем довольно высокую искусственную «силу тяжести». (Примерно так же тренируют космонавтов: чтобы приучить их к большим перегрузкам, их сажают в кресло, которое быстро вращается по кругу большого радиуса.) Соль при вращении стремится сместиться ближе к дну колонки, так что в этом направлении плотность раствора постепенно возрастает. Если в колонку добавить ДНК, то она сместится туда, где плотность раствора совпадает с ее собственной плотностью. Опыты Меселсона и Сталя: сначала показано, где в кювете центрифуги располагается тяжелая ДНК, выделенная из бактерий до их переноса на обычную среду. Бактерии первого поколения, выращенные на среде с легким азотом, содержат ДНК, состоящую наполовину из легких и наполовину из тяжелых цепей, а бактерии второго поколения содержат смесь такой «полутяжелой» и нормальной ДНК. Другими словами, поведение ДНК точно соответствует предсказаниям, сделанным на основе гипотезы Уотсона-Крика. Этот эксперимент по своему содержанию необычайно прост и дает совершенно однозначные результаты — классический пример решающего эксперимента! После того как эти результаты были опубликованы, подавляющее большинство биологов вынуждено было признать, что гипотеза Уотсона — Крика должна быть верна, и хотя до сих пор не вполне ясно, как происходит раскручивание ДНК, нет никаких сомнений, что предложенный механизм репликации отражает реальные события, происходящие в процессе клеточного деления.

На этом мы заканчиваем наш рассказ о первой функции ДНК — функции самовоспроизведения. Мы видели, как построенная Уотсоном и Криком двуспиральная модель ДНК позволила предсказать способ репликации, а потом мы убедились, что предсказание это подтверждается очень простым и вполне доказательным экспериментом. В следующих двух главах мы рассмотрим две другие функции ДНК. Во-первых, мы обсудим, как ДНК управляет синтезом белков, как наследственная информация преобразуется в структуру ферментов и других белков, синтезируемых в дочерних клетках. И во-вторых, мы постараемся понять, в каком виде информация хранится в самой ДНК, с помощью какого кода она там записана?


Глава 7Посланцы генов

В главе 6 была описана двуспиральная модель ДНК. Мы узнали, как с ее помощью удалось объяснить правила спаривания оснований и рентгенографические данные. Вслед за тем мы увидели, что эта модель автоматически подсказывает нам замечательно простую схему репликации ДНК — процесса, которым сопровождается появление каждого нового поколения. Естественно предположить, что наследственная информация, передаваемая от поколения к поколению, содержится в последовательности основания ДНК, поскольку в остальном молекула ДНК по всей своей длине одинакова, элементы главной цепи ДНК повторяются без каких бы то ни было вариаций. Мы вынуждены предположить, что последовательность оснований А, Г, Ц и Т носит характер закодированного сообщения, которое и заключает в себе наследственную информацию. Проблему конкретных особенностей кода мы отложим до следующей главы. Пока что будем просто считать, что какой-то код действительно существует, а обсуждать будем другую проблему — проблему выражения закодированной информации. Нас будет интересовать способ, посредством которого наследственная информация управляет развитием клеток потомства, — способ воплощения в потомстве совокупности признаков, определяющих данный вид.

Принимая во внимание гипотезу «один ген — один фермент», а также учитывая то обстоятельство, что ДНК содержит линейную последовательность оснований, а белок представляет собой линейную последовательность аминокислот, мы можем сформулировать проблему иначе: как последовательность оснований ДНК, содержащейся в хромосомах, преобразуется в последовательность аминокислот множества различных белков, которых в любой клетке насчитывается несколько тысяч?

Прежде чем углубиться в обсуждаемую здесь проблему, я должен буду познакомить вас еще с одним видом нуклеиновых кислот — с рибонуклеиновой кислотой (РНК). Я сожалею, что вынужден осложнять вам жизнь, но что делать? Как я уже говорил в самом начале, жизнь действительно сложна, и мы должны принимать ее такой, как она есть.

РНК (рис. XII) очень похожа на ДНК. Она отличается от ДНК только в двух отношениях. Во-первых, сахар у нее несколько иной — вместо дезоксирибозы она содержит рибозу, но это различие очень невелико, речь идет всего-навсего об одной гидроксильной группе (ОН) каждого сахарного кольца.


Рис. XII. Структура рибонуклеиновой кислоты (РНК).

Watson J.D. Molecular Biology of the Gene, New York, Benjamin, Inc., 1965, p. 91 (Дж. Уотсон, Молекулярная биология гена, «Мир», М., 1967).


Вторая особенность состоит в том, что набор оснований в РНК несколько иной, чем в ДНК. Вместо тимина в РНК появляется новое основание — урацил (сокращенно У). Итак, в РНК содержатся основания А, Г, Ц и У. Урацил химически очень близок тимину; он также относится к классу пиримидинов (с одним кольцом) и, подобно тимину, составляет пару с аденином.

Теперь снова вернемся к синтезу белка. Сравнительно недавно было показано, что в клетке синтез белков в основном происходит не в ядре, где содержатся хромосомы и, следовательно, ДНК, а в цитоплазме. А если так, то ДНК не может непосредственно управлять синтезом белков, поскольку она не там расположена: в ходе синтеза белков ДНК ядро не покидает. Мы вынуждены заключить, что существует какой-то механизм внутриклеточной передачи информации: инструкция, закодированная в ДНК, должна быть передана из ядра в цитоплазму — туда, где идет синтез белка. Недавно выяснилось, что посланцы генов, т. е. молекулы, ответственные за внутриклеточную транспортировку информации и за преобразование этой информации в последовательность аминокислот, — это опять-таки молекулы нуклеиновой кислоты, но уже иной. Я имею в виду РНК, с которой мы только-только познакомились. Как мы помним, передача информации между клетками осуществляется с помощью ДНК.

Существует несколько разновидностей РНК. Мы в этой главе рассмотрим три из них: рибосомную РНК, транспортную РНК и информационную РНК, которую также называют матричной РНК и РНК-посредником.

Теперь посмотрим, где же в действительности синтезируется белок. Местом синтеза служат крошечные частицы — рибосомы, которые в огромном количестве присутствуют в большинстве живых клеток. Обычно они прикреплены к мембранам — тонким перегородкам, образующим внутри цитоплазмы (т. е. вне ядра) густую сеть. Уже довольно давно известно, что белок синтезируется именно в рибосомах. Если клетку мы уподобляем фабрике по производству белков, то рибосомы на этой фабрике выполняют роль сборочных конвейеров. Можно выделить рибосомы из клетки, поставить дополнительное оборудование (ферменты), обеспечить их сырьем и энергией, и тогда их можно будет заставить вести синтез белка в пробирке, однако при том обязательном условии, что к ним поступает нужная информация. Описанная здесь так называемая бесклеточная система оказалась ценнейшим орудием исследования, позволявшим пролить свет на механизм биосинтеза белков.

Рибосомы построены из белка и РНК; эту РНК называют рибосомной. Нужно сразу честно признаться, что мы до сих пор не знаем, зачем она нужна. Одно время думали, что рибосомная РНК как раз и служит матрицей для синтеза белка. Это означало бы, что код рибосомной РНК соответствует последовательности аминокислот в белке, который синтезируется на данной рибосоме. Однако оказалось, что не так это все просто. Возможно, рибосомная РНК выполняет какую-то структурную роль. Во всяком случае, мы теперь твердо знаем, что любая рибосома при наличии нужной информации может делать любой белок, причем информация всегда поступает извне и с самой рибосомой не связана.

Информацию переносит РНК другой из упомянутых разновидностей, а именно информационная РНК (или РНК-посредник). Функция этого переносчика информации состоит в том, чтобы извлекать информацию оттуда, где она хранится, и доставлять ее туда, где она используется. Информация извлекается из расположенной внутри ядра ДНК и доставляется в цитоплазму — к рибосомам. Информационная РНК была открыта совсем недавно в результате целого ряда очень остроумных экспериментов, о которых, будь у меня больше места, я бы с удовольствием рассказал. Во многих клетках информационная РНК, по-видимому, весьма неустойчива. Очевидно, в большинстве случаев, как только она выполнит свою работу, сделав несколько молекул белка, она тут же рассыпается на части. Во всяком случае, в каждый данный момент времени количество информационной РНК внутри клетки весьма незначительно. Вот почему даже тогда, когда уже знали, что подобный переносчик информации должен существовать, обнаружить его было очень трудно.

Вся цепь событий, о которых я сейчас собираюсь рассказать, была установлена в результате очень сложных экспериментов, и я простоты ради сразу опишу весь механизм, не останавливаясь на том, каким способом эти сведения были добыты.

Механизм этот поистине замечателен. Информационная РНК образуется в ядре. И строится она так, что ее основания подбираются в соответствии с последовательностью оснований одной из цепей хромосомной ДНК, иными словами, подбираются согласно правилам Чаргаффа. Детали процесса нам не известны, но мы знаем, что он существует на самом деле. Итак, в согласии с правилами Чаргаффа, вставляя всякий раз в пару с аденином урацил вместо тимина, мы получим цепь информационной РНК, последовательность оснований в которой комплементарна одной из цепей ДНК[240]. Одна молекула информационной РНК может соответствовать одной или нескольким (очень немногим) молекулам белка. Как только цепь РНК построена, она переходит в цитоплазму и блуждает там до тех пор, пока не найдет какую-нибудь рибосому, к которой она и прикрепляется.

Дальше необходимо, чтобы к рибосомам были доставлены аминокислоты, из которых должна строиться полипептидная цепь. Они, конечно, должны быть выстроены в определенном порядке в соответствии с инструкцией, закодированной в информационной РНК. Теперь мы оказываемся перед лицом одной трудности логического порядка: цепочка оснований нуклеиновой кислоты способна «узнавать» другую цепочку оснований (как это происходит при репликации ДНК), но будет игнорировать цепочку аминокислот. Легко понять, как основания «узнают» друг друга — на то и существуют правила спаривания. Но как представить себе химический механизм, с помощью которого последовательность оснований могла бы «узнать» аминокислоту? Для того чтобы найти выход из этого тупика, была выдвинута — задолго до своего подтверждения — гипотеза о существовании специальной адапторной молекулы, которая, так сказать, с одного конца распознает последовательность из нескольких оснований цепи РНК, а другим концом может специфически связывать нужную аминокислоту. Предсказание подтвердилось: адаптор нашли, и оказалось, что это также РНК, а именно транспортная РНК (ее еще называют адапторной или растворимой РНК).

Транспортная РНК отличается от остальных РНК, с которыми мы встречались, тем, что ее молекулы значительно меньше. Они содержат всего по 70–80 оснований. Где-то среди них расположена последовательность оснований, комплементарная определенной последовательности оснований в информационной РНК (иначе говоря, эта последовательность транспортной РНК способна «узнавать» соответствующий участок в последовательности информационной РНК). А где-то в другом конце молекулы находится участок, способный «узнавать» определенную аминокислоту.

Отсюда следует, что должно существовать как минимум двадцать разных сортов транспортной РНК — по одной на каждую из двадцати аминокислот. Еще это означает, что имеется двадцать специфических ферментов, управляющих присоединением каждой из аминокислот к своей транспортной РНК. Дело в том, что реакции между транспортной РНК и аминокислотой, как и большинство других реакций, протекающих в живой клетке, в отсутствие фермента не идут. Сразу скажем, что все двадцать видов транспортных РНК и все ферменты были действительно обнаружены в клетке.

В ядре на ДНК формируется информационная РНК. Она поступает в цитоплазму и прикрепляется к рибосоме, а затем за нее цепляются молекулы транспортных РНК, несущие каждая свою аминокислоту. В результате аминокислоты выстраиваются в том порядке, который диктуется последовательностью оснований в РНК-посреднике. Теперь представьте себе, что аминокислоты соединяются друг с другом, и полипептидная цепь готова.

Эта схема может показаться сложной, но согласитесь, что она очень остроумна. В действительности она еще сложнее, чем я вам рассказал; многие детали нам до сих пор неизвестны. Это и неудивительно, ведь вся эта область исследований очень молода, и даже сама информационная РНК была впервые обнаружена только в 1960 году. Я упомянул здесь еще лишь о двух усложнениях.

Прежде всего, структура самих рибосом далеко не проста. Они построены из двух субъединиц разного размера — одна побольше, другая поменьше. А почему это так, мы имеем пока самые смутные представления.

Далее было обнаружено, что рибосомы, активно участвующие в синтезе белка, всегда оказываются связанными в группы по пять-шесть штук, причем все они прикреплены к одной цепи информационной РНК. Эти комплексные структуры, названные полисомами, как раз и служат подлинными производителями белка. Можно отделить полисомы от свободных, не объединенных в группы рибосом, и тогда обнаруживается, что синтез белка идет именно в полисомах.

На электронной фотографии полисом явственно видно, как рибосомы связаны очень тонкой нитью. Причем есть все основания считать ее нитью информационной РНК. Здесь мы прямо на фотографии, так сказать во плоти, видим ту удивительную молекулу, существование которой первоначально было выведено всего лишь как неизбежное логическое следствие того факта, что синтезы белка и хромосом в клетке разобщены. Создается впечатление, что одна молекула информационной РНК участвует одновременно в синтезе нескольких молекул белка. Рибосома прикрепляется к информационной РНК с одного конца и «прокладывается» вдоль по цепи до другого конца. Достигнув дальнего конца, она соскальзывает с цепи, и в этот момент в раствор освобождается вновь синтезированная молекула белка.

Суть всей схемы заключается в том, что биологическая информация одномерна и может быть записана в виде линейной последовательности. Полипептидная цепь белка представляет собой линейную последовательность аминокислот. Информация записана в нуклеиновых кислотах — как в ДНК, так и в информационной РНК, подобно строке в книге. Однако, как мы помним, большинство белков являются трехмерными объектами, их полипептидные цепи свернуты очень сложным и специфическим образом.

Как же происходит свертывание цепи миоглобина? До сих пор в нашей схеме белку было предоставлено только одно измерение, мы рассматривали его лишь как последовательность аминокислот. Теперь надо решать, является ли свертывание цепи самопроизвольным процессом или клетка содержит информацию не только о последовательности аминокислот в полипептидной цепи, но также о способе ее свертывания по окончании синтеза. Можно было бы вообразить, что в клетке имеются какие-то специальные трехмерные матрицы — своего рода формы для изготовления трехмерных молекул белка. Но пока что в пользу их существования нет абсолютно никаких данных, хотя таких матриц в каждой клетке должно было бы быть столько же, сколько и белков, т. е. порядка нескольких тысяч. Да и в самом деле едва ли можно себе представить, как такая система могла бы работать. Посмотрите только на модель белка и вам станет ясно, какие сложнейшие проблемы здесь возникают. Взять хотя бы то, что такую модель просто-напросто нельзя было бы извлечь из формы.

Сейчас принято считать, хотя это и не доказано, что белки, синтезированные в виде линейной последовательности, свертываются сами. Иными словами, сложная пространственная конфигурация молекулы белка возникает самопроизвольно. Теперь эта простая гипотеза выглядит еще более правдоподобно, поскольку недавно было показано, что молекулы белка (фермента) с искусственно развернутыми цепями, даже в пробирке, где нет ни рибосом, ни нуклеиновых кислот (вообще никаких других компонентов живой клетки), могут снова свертываться нужным образом, так что уже через несколько минут активность фермента восстанавливается.

Тот факт, что полипептидные цепи свертываются самопроизвольно, придает изучению трехмерной структуры белков еще больший интерес, поскольку у нас, таким образом, появляется надежда выяснить правила свертывания цепей с известной последовательностью аминокислот. В дальнейшем, пользуясь этими правилами, мы смогли бы установить трехмерную структуру белка по его аминокислотной последовательности, минуя все тяготы, связанные с применением рентгеноструктурного анализа. Впрочем, я думаю, что пока нам до этого еще очень и очень далеко.

Подведем итоги. Мы описали схему, согласно которой информация, хранимая в ядерной ДНК, считывается в цепь информационной РНК. Эта РНК поступает в цитоплазму, и там в ней прикрепляется одна или несколько рибосом. Рибосомы перемещаются вдоль цепей РНК и по мере своего движения синтезируют белок. Аминокислоты доставляются к этому конвейеру молекулами транспортной РНК и размещаются здесь в определенной последовательности в соответствии с кодом. Расшифровкой этого кода опять-таки ведают молекулы транспортных РНК: место, предназначенное для их аминокислоты, они распознают, отыскивая соответствующий участок в цепи информационной РНК.

Когда в главе 5 мы впервые заговорили о нуклеиновых кислотах как о носителях наследственных признаков любой живой клетки, я сказал, что подобную роль они могут играть только при условии, что им будут присущи три главных свойства: способность к репликации, способность к хранению информации и способность к управлению синтезом белков. Мы уже обсудили первое и третье свойства. В следующей главе пойдет речь о втором свойстве. Нас будет интересовать соответствие между последовательностью оснований в цепи нуклеиновой кислоты и последовательностью аминокислот в синтезируемой под контролем нуклеиновой кислоты цепи белка. Это и есть так называемая проблема кода. В самое последнее время в этой области были достигнуты огромные успехи, так что у нас в руках имеется почти полное решение проблемы, а ведь всего несколько лет назад она казалась невероятно трудной — никто даже и не надеялся, что узнать это решение суждено уже нашему поколению.


Глава 8Мутации и код

В двух последних главах мы просто приняли, что наследственная информация, хранимая в ДНК или РНК, закодирована в них в виде последовательности оснований. Не вдаваясь особенно в детали кода, мы заинтересовались прежде всего тем, как в ходе клеточного деления информация передается от ядра к ядру — это привело нас к схеме репликации ДНК — и, во-вторых, как информация через посредство информационной РНК переносится внутри клетки — из хромосом, находящихся в ядре, в цитоплазму, к рибосомам, где она используется для синтеза цепей со специфической последовательностью аминокислот.

В этой главе мы займемся непосредственно самим кодом, но сначала уделим немного внимания мутациям — этим внезапным изменениям генетического материала, которые ведут к изменениям внешнего вида и функций организма. В свете того, что мы уже знаем, мы, естественно, связываем изменения генетического материала с нарушениями в последовательности оснований ДНК и считаем, что последующие изменения признаков организма обусловлены изменениями в последовательности аминокислот в одном или нескольких его белках. Изменения, вызванные мутацией, иногда едва заметны, а эти, казалось бы, незначительные изменения часто имеют весьма серьезные последствия для организма, в чем мы уже убедились на примере аномальных гемоглобинов. Бывает, что в результате случайной мутации функция белка оказывается полностью нарушенной. В таких случаях организм, как правило, погибает, и тогда мы называем мутацию летальной (смертельной). Хотя и очень редко, но возникают также полезные мутации. Обычно такие мутации в процессе естественного отбора закрепляются в последующих поколениях и служат уже признаками нормальной ДНК.

Какими могут быть мутации? Поскольку мы представляем себе наследственную информацию в виде последовательности оснований ДНК, мы можем рассматривать ее как зашифрованный текст. Тогда мутации будут чем-то вроде обычных опечаток. Я приведу несколько примеров таких опечаток, возможных в самых обычных фразах, встречающихся, скажем, в газетных статьях и объявлениях.

ОЖИДАЕТСЯ ПРОХЛАДНАЯ ПОГОДА С ЗАМОРОЗКАМИ НА ПОЧТЕ.

Опечатку такого рода можно назвать замещением: здесь нужная буква замещена неправильной.

ОТПРАВЛЕНИЕ ПОЕЗДА В ДЕСЯТЬ ЧАСОВ УТРА ПО НЕЧЕСТНЫМ ЧИСЛАМ.

Здесь вставлена лишняя буква; назовем такую ошибку вставкой.

В ДОМЕ КУЛЬТУРЫ СОСТОИТСЯ ОКЛАД НА ТЕМУ.

А тут, наоборот, буква пропущена; такую ошибку принято называть делецией.

ЧЕЛНЫ УЧЕНОГО СОВЕТА ОСВЕЩАЮТСЯ ПО ПОНЕДЕЛЬНИКАМ.

В данном случае часть текста напечатана в обратном порядке (переставлены две соседние буквы), это инверсия.

И наконец, сбой в наборе может породить полную бессмыслицу. Мы будем называть такие ошибки нонсенсами:

ПРОГРАММЫ НАУЧНО-ПОПУЛЯРНЫХ ПЕРЕДАЧ.

ИНРГДХ ГПТ ИЮР УНСМ.


Надо вам сказать, что точно такого же характера опечатки встречаются и в генетическом материале живых организмов, и те названия, которые я им дал, взяты из лексикона генетиков, занимающихся изучением мутаций. В этой главе мы будем вести речь о трех видах мутаций.

Как возникают мутации? В наши дни почти каждый знает, что мутации могут быть вызваны радиацией. К нашему несчастью, мы из собственного опыта знаем о генетических последствиях ядерных взрывов. Среди встречающихся в природе мутаций многие обусловлены слабой радиацией. Действию такой слабой радиации — хотим мы того или нет — мы постоянно подвергаемся. Эта радиация совершенно не связана с испытаниями ядерного оружия. Правда, иногда она тоже обусловлена деятельностью человека. Речь идет, например, о различных рентгенологических обследованиях, радиоактивном излучении. Радиоактивны многие минералы, космические лучи, приходящие к нам из мирового пространства, тоже составляют один из видов радиации. Даже непосредственно в составе нашего тела небольшая доля атомов всегда радиоактивна (так, например, мы все содержим калий, а природный калий всегда слегка радиоактивен).

Мутации могут быть также вызваны химическими соединениями. В частности такое довольно простое соединение, как азотистая кислота, оказывает действие на некоторые основания, превращая, например, цитозин в урацил, что ведет к мутации, которую мы назвали замещением. Соединения другого класса — акридины — могут иногда приводить к появлению в последовательности дополнительного основания (вставки) или, наоборот, к выпадению основания — мутация, названному нами делецией.

Я упоминаю об этом потому, что среди великого множества экспериментов, стоящих за всеми упоминающимися в книге открытиями, изучение мутаций — естественных и искусственных — сыграло, пожалуй, главную роль. В частности мутации сыграли важную роль при изучении генетического кода, которым мы теперь и займемся.

Генетический код можно считать чем-то вроде азбуки Морзе. В азбуке Морзе имеются три символа — точка, тире и пустой промежуток (отделяющий соседние буквы). Код нуклеиновых кислот содержит четыре символа: А, Г, Ц и Т (или в РНК — А, Г, Ц, и У).

Трудность изучения кода состоит в том, что мы не умеем прямо определять последовательность оснований в нуклеиновых кислотах, как это удается сделать для последовательности аминокислот в белках[241]. Если бы мы умели определять последовательность оснований в нуклеиновых кислотах, то тогда можно было бы выделить информационную РНК, ведущую синтез определенного белка, установить последовательность оснований в этой РНК и последовательность аминокислот в белке, а затем выписать обе последовательности рядом, и весь код будет перед нами как на ладони. Но раз мы не можем сделать этого прямо, приходится идти кружным путем.

Прежде всего требуется выяснить «кодовое число», иными словами, узнать, сколько символов необходимо для кодирования одной аминокислоты. В азбуке Морзе кодовое число непостоянно, оно меняется от буквы к букве. Некоторые буквы обозначают одним символом, скажем, одна точка обозначает букву Е (кодовое число равно единице); буква М обозначается двумя символами — тире, тире (кодовое число два). Максимальное кодовое число у буквы Э: оно равно пяти (букву Э обозначают символами точка, точка, тире, точка, точка).

Что касается генетического кода, то здесь нам ясно, что кодовое число должно быть больше двух, так как в противном случае с помощью четырех символов мы могли бы составить только 4 × 4 = 16 возможных комбинаций. Следовательно, кодовое число должно быть равно по меньшей мере 3; тогда можно получить 4 × 4 × 4 = 64 комбинации, а этого более чем достаточно для обозначения 20 аминокислот. Правда, у нас получится 44 лишних комбинации; как быть с ними? Ну, во-первых, код может быть «вырожденым». На научном жаргоне это слово означает, что одной аминокислоте соответствует несколько различных комбинаций, точно так же, как одно и то же лекарство может идти в продажу под разными названиями. А может быть и так, что все лишние 44 комбинации являются «нонсенсами» и ничего не означают. Наконец, эти комбинации могут выполнять роль знаков препинания, обозначать начало или конец синтеза белка. Легко придумать и другие возможности. Все эти варианты следует иметь в виду при обсуждении любого кода. Нужно еще помнить, что один вариант не исключает другого: может существовать вырожденный код, содержащий к тому же несколько «нонсенсов».

Еще совсем недавно не было никаких экспериментальных данных, с помощью которых можно было бы проверить относящиеся к коду теории. Проблема кода представляла неплохую арену, на которой могли пробовать свои силы некоторые очень хорошие математики, ну и просто любители головоломок. Было предложено несколько решений, но если никто не мог поручиться, что хотя бы одно из них правильно, то в ошибочности некоторых из предложенных кодов сомнений не было.

Просто как пример остроумия предложенных ранее кодов приведу код Гамова — одно из первых всерьез предложенных решений. Этот код состоял из перекрывающихся триплетов и имел ту притягательную особенность, что, естественно, приводил к «магическому числу» 20 (аминокислот, как мы знаем, двадцать). Принцип этого кода иллюстрирует рисунок XV.


Рис. XV. Перекрывающийся триплетный генетический код, предложенный Г.А. Гамовым.


Как видно из рисунка, каждое основание служит частью сразу трех триплетов, кодирующих три соседние аминокислоты. Однако легко показать, что предложенная схема не может быть правильной. Если вы чуть внимательнее рассмотрите этот код, то увидите, что он налагает на возможные последовательности аминокислот ряд ограничений. Если этот код верен, то некоторые сочетания аминокислот не должны встречаться ни в одном белке. Однако было показано, что никаких подобных ограничений в действительности не существует. Кроме того, в таком случае точковая мутация, которая состоит в замене одного основания, должна была бы приводить к изменению сразу трех стоящих рядом аминокислот, во всяком случае, не менее чем трех. Но мы уже знаем, что это не так: достаточно напомнить аномальные гемоглобины, в которых изменена только одна аминокислота. Да и вообще аномалии в белках почти всегда сводятся к однократным изменениям последовательности. Следовательно, код Гамова не может служить правильным решением.

Первая аминокислота кодируется первым, вторым и третьим основаниями; вторая аминокислота — вторым и четверым и т. д. Согласной этой схеме возможно 20 независимых комбинаций, соответствующих 20 аминокислотам. Изменение одного основания, например основания Г (выделено жирным шрифтом), приведет к изменению сразу трех последовательно расположенных аминокислот (в нашем примере второй, третьей и четвертой). Код такого типа накладывает ограничения на возможные последовательности аминокислот. Например, за аминокислотой, кодируемой триплетом АТТ, может следовать только та аминокислота, которой соответствует кодовый символ, начинающийся с ТТ. Неперекрывающиеся коды не связаны с подобными ограничениями[242].

Был предложен еще ряд кодов. Но лишь совсем недавно были получены экспериментальные данные, позволяющие судить не только о природе кода, но и о том, какие конкретно комбинации оснований кодируют каждую аминокислоту. Я намерен описать два типа экспериментов: один дает сведения относительно общего характера кода, а другой устанавливает реальные символы и их значение.

Эксперименты, связанные с выяснением природы кода, будет легче понять, если я заранее скажу правильный ответ. Код состоит из неперекрывающихся триплетов оснований и читается с определенного места в одном направлении. Например, последовательность АГЦТТЦЦГТ… следует читать: АГЦ ТТЦ ЦГТ… и так до конца гена. Каждый триплет соответствует одной определенной аминокислоте (серину, фенилаланину, аргинину.). Этот результат был получен при изучении мутантных микроорганизмов, возникающих под действием акридина. Как вы помните, обработка акридиновыми красителями приводит либо к появлению в последовательности дополнительного основания (вставка), либо к пропуску основания (делеция); от случая к случаю происходит то вставка, то делеция.

Особенно просто прояснить этот эксперимент, обратившись к аналогии с азбукой Морзе. Пусть сообщение начинается со слова:



(Чтобы сделать аналогию с кодом ДНК возможно ближе, я специально составил слово из букв, для которых требуются три символа, и выбросил пропуски между буквами.)

Теперь предположим, что где-то в середине случайно произошла вставка, например на седьмом месте появилась лишняя точка. Составляя снова символы в группы по три, прочтем текст:



Как видите, сразу после вставки символы стали читаться неправильно, и все слово превратилось в бессмысленное сочетание букв. Легко сообразить, что и следующие слова постигнет та же участь, и так до конца сообщения. Если, наоборот, в том же месте произойдет делеция, то мы снова прочтем бессмыслицу. Точно так же и в ДНК однократная вставка или делеция делает генетическое сообщение бессмысленным: в синтезируемой последовательности аминокислот с определенного места пойдет брак. Можно заранее предсказать, что белок, синтезируемый под контролем ДНК, которая была обработана таким способом, утратит свою функцию. Если же без этого белка организм не может существовать, то он погибнет — мутация будет летальной. На практике так и случается: однократные вставки и делеции летальны.

А теперь представим себе, что где-то произошла сначала вставка, а потом, чуть позднее, делеция. Как и прежде, сразу после вставки сообщение превратится в бессмыслицу, но после делеции правильное считывание восстановится и снова пойдет осмысленный текст:



Если то же произойдет с ДНК, то в белке появятся только две или три неправильные аминокислоты — во всяком случае, немного (если, конечно, делеция произойдет недалеко от вставки). Затем в последовательности аминокислоты снова встанут на свои места. Хотя такой белок будет работать хуже обычного, но, по крайней мере, можно надеяться, что совсем из игры он не выйдет. И снова предсказания подтверждаются на практике. Однократная делеция или вставка летальна, но две близко отстоящие мутации, из которых одна — вставка, а другая — делеция, хотя и ухудшают жизнеспособность организма, но в ряде случаев не летальны.

По-настоящему решающий эксперимент был выполнен, когда удалось в один участок ДНК ввести сразу три близко расположенные вставки. Как мы видели, одна вставка приводит к появлению бессмыслицы сразу с того места, где она произошла. Можно показать, что и вторая вставка, близкая к первой, даст тот же результат. Иными словами, сообщение становится бессмысленным после первой вставки, но вторая вставка (в отличие от делеции) текста сообщения не восстанавливает:



Если же ввести три вставки, то после третьей вставки смысл текста восстанавливается:



Подобные ситуации были обнаружены при изучении живых организмов. Оказалось, что одна вставка летальна, две — тоже летальны, а три — не летальны, хотя и оказывают вредный эффект, поскольку короткий участок молекулы белка оказывается измененным.

Как легко убедиться, отсюда с очевидностью следует, что кодовое число должно равняться трем: каждая аминокислота кодируется тремя символами. При кодовом числе, равном четырем, для восстановления смысла текста требовались бы четыре вставки. Итак, результаты проведенных экспериментов почти не оставляли сомнений в том, что код должен быть триплетным, неперекрывающимся и должен считываться по три, начиная с некоторой точки, которую можно было бы рассматривать как начало «предложения».

Обратимся теперь ко второй серии экспериментов, имевших целью выяснение действительных кодовых комбинаций. В этих экспериментах использовалась уже упоминавшаяся бесклеточная система. Итак, все компоненты, необходимые для синтеза белка, собраны вместе, в одной пробирке. Сюда входят рибосомы, источник энергии, запас аминокислот, некоторые из транспортных РНК и полный набор необходимых ферментов. Если теперь в пробирку добавить информационную РНК, то начнется синтез белка. Например, можно ввести туда РНК, кодирующую гемоглобин, и в системе начнут в заметном количестве синтезироваться молекулы гемоглобина.

Бесклеточная система, оказавшаяся необычайно полезной при изучении синтеза белка, с неменьшим успехом использовалась и для изучения кода. Было обнаружено, что такая система работает и тогда, когда в нее добавляется искусственный посредник — синтетическая РНК с известной последовательностью оснований. В первом из таких экспериментов в качестве посредника была добавлена синтетическая РНК, состоящая целиком из урацила, и «сообщение» читалось так: УУУУ… Оказалось, что в присутствии такой РНК в системе начинается синтез полипептида, состоящего из единственной аминокислоты — фенилаланина; этот полипептид называют полифенилаланином. Поскольку мы уже знаем, что код триплетный, мы можем сделать вывод, что символ УУУ соответствует именно фенилаланину:

УУУУУУ… → Фен Фен.

Триплет УУУ был первым расшифрованным символом генетического кода. Этот первый успех побудил исследователей к постановке огромного числа подобных же экспериментов с добавлением в систему других синтетических РНК и анализом полученных полипептидов.

Работа была нелегкой отчасти в связи с тем, что бесклеточная система сама по себе очень сложна и никто как следует не знает, как она работает (иногда она вообще отказывается работать). Кроме того, получать синтетические РНК с нужной последовательностью оснований технически довольно сложно. Хотя это чисто химическая проблема, с ее решением тоже приходится довольно туго. Но вопреки всем этим трудностям удалось выяснить смысл почти всех 64 триплетных комбинаций для перевода кода оснований на язык аминокислот.

Кодовые символы, установленные в опытах с бесклеточной системой и искусственными РНК, могут быть выверены совершенно независимым способом. Чтобы пояснить, какие здесь возможны тексты, обратимся снова к аномальным гемоглобинам, в частности к гемоглобину серповидных клеток. Известно, что в этом гемоглобине один остаток глутаминовой кислоты замещен валином. Далее известно, что совсем другое заболевание крови, распространенное в Западной Африке, связано с замещением в гемоглобине той же самой глутаминовой кислоты на лизин. Наиболее вероятно, что каждое из этих замещений обусловлено мутацией, затрагивающей одно основание хромосомной ДНК. Если это в самом деле так и если наш словарь кодовых слов правилен, то можно с его помощью объяснить превращения:



заменой в каждом случае одного основания ДНК. Обращаясь к рисунку XV, мы замечаем, что такая возможность есть:



Сейчас уже известно довольно много аномалий такого рода, которые могут послужить тестами в аналогичных ситуациях. Почти во всех случаях результаты оказываются в согласии со словарем кодовых символов, приведенным на рисунке XV; следовательно, найденные комбинации далеко не случайны. Нет сомнений в том, что этот словарь, по-видимому, почти полностью правилен, и хотя остается еще несколько неясных мест, я уверен, что в скором времени их не будет.

Мы показали, как искусственные мутации помогли установить природу кода — помогли выяснить, что он составлен из триплетов оснований. Мы увидели также, как эксперименты с бесклеточной системой открыли нам реальные кодовые символы. И хотя многое еще остается неясным, у нас есть все основания рассматривать полученные результаты как подлинный триумф молекулярной биологии. Всего несколько лет назад только необыкновенно смелые люди могли предсказать появление такой таблицы в течение ближайших десяти лет.

Кендрью Дж.

Нить жизни. — М., 1968.


Владимир Иванович Вернадский