Общая теория относительности была опубликована в 1916 г. Она распространила принципы специальной теории относительности на неинерциальные (ускоренные) системы. Эйнштейн указал, что все системы отсчета, инерциальные и неинерциальные, равноценны для описания движения материальных объектов, и определил отличия между системами: инерциальная система движется равномерно и прямолинейно, неинерциальная система движется с ускорением. В рамках общей теории относительности он разработал полевую теорию тяготения, предположив существование гравитационного поля и особых частиц гравитации, которые назвал гравитонами.
Улучшенная теория базировалась на следующих принципах:
1) принцип относительности распространяется на все движущиеся системы;
2) применение принципа постоянства скорости света ограничено областями, где гравитационными силами можно пренебречь.
Эйнштейн отказался от применения принципа дальнодействия (то есть мгновенного взаимодействия между объектами) и высказал принцип близкодействия (взаимодействия между объектами на уровне частиц).
Общая теория относительности дала два основных вывода:
1. Свойства пространства-времени зависят от движущейся материи.
2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.
3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.
Из этих выводов естественно вытекает, что:
1) время замедляется или ускоряется в зависимости от того, в какой системе находится наблюдатель – в движущейся или покоящейся;
2) в сильном поле тяготения происходит искривление пространственно-временного континуума, и чем больше масса, тем сильнее будет искривление пространства. Это положение Эйнштейна легло в основу создания новых научных космологических теорий;
3) из-за поля тяготения линии солнечного спектра будут смещаться в сторону красного цвета, по сравнению со спектрами соответствующих земных источников (что было доказано экспериментально при изучении спектральных данных Солнца).
47. Понятие электромагнитной картины мира
Электромагнитная теория базируется на естественнонаучном материализме и принципах теории электромагнитного поля:
1) материя континуальна (непрерывна);
2) электромагнитное поле материально;
3) материя и движение связаны неразрывно;
4) пространство, время и движущаяся материя связаны между собой.
В электромагнитной картине мира материя существует в двух видах – как вещество и как поле. Это две формы существования материи – они не могут переходить одна в другую и строго разделены. Основополагающим является поле, имеющее континуальные характеристики, а не вещество с его дискретностью.
В годы создания электромагнитной картины мира пространство представлялось как пустое, но заполненное эфиром (о свойствах и качествах которого не было единого мнения). После появления специальной теории относительности от идеи эфира отказались. Пространство стало пониматься как единое со временем и образующее единый четырехмерный мир; свойства пространственно-временного континуума зависят от распределения и движения материи. Человек воспринимает пространство и время как проекции, то есть отдельно друг от друга. Электромагнитная картина мира ввела понятие мировой точки, то есть события с некой частицей, которая из одной точки четырехмерного пространства-времени перемещается в другую по траектории, которую называют мировой линией.
В основе электромагнитной картины мира лежит рассмотрение двух видов взаимодействий близкого порядка – гравитационного и электромагнитного, которые относятся к полевому взаимодействию. Эйнштейн пытался свести эти взаимодействия к единому, объединив гравитационное и электромагнитные поля, и создать единую теорию поля, но не успел. Единой теории поля не существует и сегодня.
Основополагающими являются принципы: относительности Эйнштейна, близкодействия, постоянства и предельной скорости света, эквивалентности инертной и гравитационной масс, причинности, взаимосвязи массы и энергии.
Но электромагнитная картина мира не могла объяснить некоторых явлений (соотношения между полем и зарядом, устойчивость атомов, их спектры, явление фотоэффекта, излучение абсолютно черного тела и т. п.), и на смену ей пришла квантово-полевая картина мира .
48. Формирование квантовой физики
В основе квантовой физики лежат идеи о квантовании физических величин и корпускулярно-волновом дуализме. Квантованными называются физические величины, которые могут принимать лишь определенные дискретные значения, а выражение таких величин через квантовые числа называется квантованием . Идея квантования относится к концу XIX – началу XX вв. и связана с рядом открытий в физике и получением ряда экспериментальных данных. Большое значение для появления и развития квантовой физики имело открытие электрона, который обладал сверхмалым отрицательным зарядом. Для выражения заряда электрона пришлось применить способ, названный квантованием. Математическое выражение силы заряда через квантование для электрона выглядит как q = ±n · e.
Толчком для развития квантовых представлений о мире явились и противоречия в существующей электромагнитной теории, которые привели к испугавшим научный мир расчетам и разговорам об ультрафиолетовой катастрофе. Суть сводилась к тому, что рассчитанная энергия теплового излучения на всех частотах равнялась бесконечности, а такого не могло быть, исходя из закона сохранения энергии, и говорило неверной теории либо близкой космической катастрофе.
Планк предложил новую теорию, предполагавшую, что электромагнитное излучение испускается отдельными порциями (квантами), величина которых пропорциональна частоте излучения, поэтому энергия может принимать лишь дискретные значения, равные целому числу квантов энергии. В рамках этой теории закон сохранения энергии соблюдался, а сама гипотеза Планка легла в основу квантовой физики.
Экспериментально квантовую теорию подтверждало явление фотоэффекта (выбивание электронов из вещества под действием света), для которого были выявлены следующие закономерности: независимость энергии выбиваемых электронов от интенсивности света и зависимость от частоты световой волны; наличие для каждого вещества минимальной частоты, при которой фотоэффект возможен («красной» границы фотоэффекта). Объяснить их электромагнитной теорией было невозможно. Эйнштейн предположил, что свет представляет собой поток световых частиц – квантов, которые позже были названы фотонами. Таким образом, в основе света лежит как волновая, так и корпускулярная природа.
49. Корпускулярно-волновая теория
Свет был таким природным явлением, которое на протяжении всего развития науки труднее всего поддавалось объяснению. Ньютон объяснял свет существованием множества корпускул, Гук и Гюйгенс – как механическую волну, Максвелл – как электромагнитную волну. Открытие фотоэффекта заставило снова вернуться к корпускулярной теории. И наконец, сформировалась корпускулярно-волновая теория света, признавшая наличие и тех и других качеств.
Эксперименты доказали, что свет имеет дуальную природу, и распределение волновых или корпускулярных свойств зависит от длины волны: чем она меньше, тем сильнее проявляются корпускулярные свойства света: E = h · ν. Физик де Бройль в 1924 г. высказал идею, что аналогичными дуальными свойствами обладает не только свет, но и другие элементарные частицы: в одних условиях они ведут себя как корпускулы, в других – как волны. Если частица ведет себя как волна, она не проявляет корпускулярных свойств, если она ведет себя как корпускула, она не проявляет волновых качеств, то есть в конкретный момент она является либо корпускулой, либо волной, и никогда вместе.
В 1927 г. Нильс Бор сформулировал принцип дополнительности, который гласит, что, как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий, то есть квантово-механические явления должны описываться при помощи двух взаимоисключающих (дополнительных) наборов классических понятий, и только их совокупность может дать полную информацию о рассматриваемых явлениях как о целостных.
Такие явления не ограничиваются квантовой физикой. Принцип дополнительности применяется в биологии, психологии, социальных науках и т. п., то есть тогда, когда рассматриваемое явление или система достаточно сложно и противоречиво, вследствие чего не может быть описано с точки зрения одного выделенного основополагающего качества.
По современным понятиям, квант не является в полном смысле ни корпускулой, ни волной, он соединяет свойства частиц и свойства волн, образуя некий третий объект, который в силу узости нашего сознания не может быть воспринят и описан в едином понятии.
50. Принцип неопределенностей Гейзенберга
Принципы классической физики оказались неприменимы для мира сверхмалых частиц. В классической механике движение частиц описывается по существующим правилам: у частицы существуют конкретная траектория движения, конкретные координаты в пространстве, неизменная масса и энергия. Поведение частицы в микромире этим правилам не подчиняется. Микрочастица в силу волновых свойств не имеет ни траектории, ни координат, ни импульса, которые можно точно рассчитать: чем точнее определяется координата, тем менее точно можно определить импульс. О поведении микрочастицы можно говорить только приблизительно. Гейзенберг вывел неравенства, описывающие соотношения этих неопределенностей.
где x – это неопределенность, или неточность, нахождения координаты импульса; px – неопределенность, или неточность, нахождения самого импульса. В случае если это произведение сравнимо с постоянной Планка, то поведение частицы описывается квантовой механикой. В случае если это произведение много больше постоянной Планка, то поведение частицы описывается классической механикой. В то же время ни для какого движения в природе это произведение не может быть меньше постоянной Планка: h