Космические твердотопливные двигатели — страница 10 из 12

РДТТ применяются также на борту космических кораблей и в автоматических межпланетных КА, где они выполняют роль тормозных двигателей, развивающих сравнительно небольшой импульс тяги. После окончания работы эти РДТТ отделяются от КА.

В 1961–1962 гг. тормозной РДТТ тягой около 23 кН и массой 95 кг (с пластиковым корпусом) устанавливался в КА «Рейнджер» с тем, чтобы погасить скорость падения приборного контейнера на поверхность Луны (рис. 12). Двигатель должен был включаться на высоте 16 км и работать в течение 10 с до высоты 330 м. Далее сферический контейнер «Рейнджера» должен был совершать свободное падение, ударяясь о лунный грунт со скоростью 33 м/с, обеспечивающей сохранность научных приборов. По различным техническим причинам запуски всех КА «Рейнджер» указанного типа завершились неудачей. Зато успешными были полеты в 1966–1968 гг. нескольких КА «Сервейер», при посадке которых на лунную поверхность использовался бортовой РДТТ, Он обеспечивал снижение скорости КА до 120 м/с (далее включались ЖРД мягкой посадки). По своим параметрам этот твердотопливный двигатель близок к его модификации, использованной впоследствии в составе РН «Дельта».

При посадке космических кораблей «Меркурий» (1962–1963 гг.) и «Джемини» (1965–1966 гг.) твердотопливные двигатели обеспечивали их сход с околоземной орбиты на траекторию спуска. Тормозная двигательная установка корабля «Меркурий» содержала три РДТТ (рис. 13) с диаметром корпуса 300 мм, тягой каждого 4,45 кН и временем работы 10 с. Включение этих двигателей (их расположение было показано на рис. 5) осуществлял сам космонавт при помощи ручной системы управления.


Рис. 12. РДТТ космического аппарата «Рейнджер-3»:

1 — сопло раскрутки; 2 — корпус РДТТ раскрутки; 3 — тормозной РДТТ


Рис. 13. Тормозной РДТТ космического корабля «Меркурий»


Тормозная установка «Джемини» состояла из четырех РДТТ со сферическими корпусами (из титанового сплава) диаметром ~320 мм, с начальной массой по 31 кг. РДТТ снаряжались смесевым топливом, содержащим перхлорат аммония, полисульфидное горючее-связку и алюминий. При сгорании этого топлива развивалась тяга около 11 кН. В отличие от «Меркурия» на «Джемини» тормозные РДТТ включались не одновременно, а последовательно — один за другим:

Твердотопливная тормозная установка предусматривалась и в космических кораблях «Восход» (1964–1965 гг.) в качестве резервной: она должна была включаться в случае отказа жидкостной установки (которая, однако, продемонстрировала надежную работу).

В 70-х годах тормозные РДТТ применялись в КА для исследования Марса и Венеры. На стр. 28 упоминался один из таких двигателей, который обеспечил перевод спускаемых аппаратов советских. КА «Марс-2» и «Марс-3» с пролетной траектории на траекторию встречи с планетой. Этот РДТТ с тягой 4 кН и временем работы 55 с был показан на рис. 7 в составе КА. Недавно, в декабре 1978 г., бортовой РДТТ тягой 18 кН обеспечил перевод американского КА «Пионер-Венера-1» (начальной массой 550 кг) с пролетной траектории на орбиту Венеры, изменив при этом скорость КА на 1060 м/с. В сферическом корпусе двигателя диаметром 622 мм содержалось около 200 кг твердого топлива, которое было израсходовано примерно за 30 с. Этот же РДТТ использовался ранее в качестве апогейного бортового двигателя геостационарных ИСЗ «Скайнет».

ПЕРСПЕКТИВЫ РАЗВИТИЯ КОСМИЧЕСКИХ РДТТ[6]

Направления исследований и достигнутые результаты. Прежде всего следует отметить работы, связанные с модификацией существующих или поиском новых твердых ракетных топлив. При этом особое значение придавалось способам повышения характеристик топлив. Разработка топливных составов является сложной задачей, поскольку весьма часто факторы, способствующие улучшению одного качества, вызывают нежелательное изменение другого.

В ближайшие годы возможности повышения удельного импульса РДТТ за счет применения более эффективных топлив представляются довольно ограниченными. Наибольшего прироста этого параметра — порядка 200 м/с (т. е. 7 %) можно ожидать от использования металлизированных топлив, содержащих бериллий вместо алюминия. Увеличение удельного импульса в этом случае объясняется снижением молекулярной массы топлива (так как у бериллия она в 3 раза меньше, чем у алюминия) в сочетании с повышением температуры его сгорания. К настоящему времени созданы и испытаны образцы РДТТ, работающие на бериллийсодержащем топливе, однако широкому внедрению его препятствует чрезвычайно высокая токсичность бериллия (и соответственно продуктов сгорания топлива); к тому же бериллий дорог. Так что, по-видимому, указанное топливо найдет применение лишь в сравнительно небольших РДТТ, включение которых предусматривается уже в космосе.

Дальнейший прирост удельного импульса примерно еще на 200 м/с можно было бы получить, используя вместо бериллия его гидрид (BeH2). Однако этому препятствуют (помимо токсичности) химическая нестабильность соединения («утечка» водорода при хранении) и трудность приготовления достаточно плотных его составов. Следует заметить, что рассмотренные нами новые металлсодержащие топлива характеризуются при большем удельном импульсе меньшей плотностью (что является недостатком), поскольку по этому параметру бериллий уступает алюминию почти в 1,5 раза, а гидрид бериллия — более чем в 4 раза.

Энергетические характеристики твердых топлив могут быть повышены за счет применения в них более активных окислителей и горючих-связующих. Согласно расчету использование в смесевом топливе перхлората нитрония NO2ClO4 (вместо перхлората аммония, который содержит почти вдвое меньше кислорода) обеспечивает прирост удельного импульса до 300 м/с. Применению этого нового окислителя препятствуют, однако, его гигроскопичность, плохая совместимость с освоенными связующими и взрывоопасность. С целью снижения чувствительности перхлората нитрония к внешним воздействиям предложено, в частности, обрабатывать его газообразным аммиаком, в результате чего образуется «пассивный» поверхностный слой перхлората аммония. Высокая чувствительность препятствует применению в смесевых топливах и фтораминовых связующих, содержащих атомы F, N, Н; по удельному импульсу такие топлива были бы равноценны модифицированным двухосновным, содержащим октоген.

Теми же способами, что и увеличение удельного импульса, могут быть улучшены другие характеристики твердых ракетных топлив: плотность, механические свойства, стабильность, технологичность. Желательным свойством твердого топлива является его полимеризуемость при нормальной температуре. Это позволяет упростить технологический процесс изготовления РДТТ и используемое при этом оборудование, а также избежать термических напряжений в топливном заряде (которые возникают при полимеризации в условиях повышенных температур). С указанной целью предложены различные катализаторы, с введением которых одновременно улучшаются механические свойства заряда.

Эффективным считается и использование так называемых многофункциональных и комплексных добавок, позволяющих получать твердые топлива с заданным, оптимальным сочетанием свойств. Желаемый эффект может быть также достигнут изменением структуры известных компонентов, применением новых способов их изготовления или обработки, а также изменением химической технологии приготовления топлива.

Для обеспечения длительной работы РДТТ без ухудшения первоначальных характеристик большое значение имеет разработка эрозионностойких конструкционных и теплозащитных материалов, а также методов изготовления деталей из них. В особенности это касается столь напряженной части РДТТ, как горловина сопла. До недавнего времени в горловинах крупных РДТТ, рассчитанных на длительную работу и использование высокоэффективных топлив, применялись кольца из пиролитического графита в сочетании с другими деталями или графитовая ткань, намотанная из ленты. Первая конструкция имеет тенденцию к расслаиванию в процессе работы, а вторая подвергается значительной эрозии.

От этих недостатков свободны созданные недавно сопла, горловины которых изготовлены намоткой материала углерод—углерод (здесь и армирующие волокна, и связующее из углерода), с применением тканей с объемной (трехмерной) ориентацией волокон. Полученные таким образом детали воспринимают одновременно тепловые и механические нагрузки (давление газов). Надежность и высокая эрозионная стойкость новой конструкции подтверждены испытаниями экспериментальных РДТТ. Они показали, что сопло в течение 150 с может успешно противостоять продуктам сгорания смесевого топлива с 18 %-ным содержанием алюминия: средняя скорость эрозии горловины не превышает 0,04 — 0,05 мм/с. Это обстоятельство открывает широкие возможности для использования в РДТТ новых, более эффективных топлив и для увеличения продолжительности работы РДТТ.

Значительная доля (40–50 %) массы конструкции РДТТ приходится на корпус. Поэтому повышению прочности конструкционных материалов уделяется большое внимание. Характеристики освоенных металлических сплавов могут быть повышены соответствующей термообработкой. Применению новых металлических сплавов и технологических методов обработки препятствуют, однако, экономические ограничения: следует учитывать, что повышаются не только энергетические параметры РДТТ, но и его стоимость.

Дальнейшие перспективы усовершенствования РДТТ открываются в связи с применением в корпусах РДТТ конструкционных материалов из органопластиков. Эти пластики с армирующими наполнителями в виде органических волокон имеют более высокие механические свойства при меньшей плотности, чем стеклопластики. Удельная прочность уже используемых органопластиков с эпоксидным связующим составляет около 75 км. Предполагается довести в недалеком будущем этот показатель до 90 — 100 км за счет повышения характеристик армирующих волокон и применения лучших смолсвязующих. Последним способом можно также повысить сопротивление пластиков межслойному сдвигу и, следовательно, уменьшить размеры и массу соединительных деталей конструкции. Недостатком современных органопластиков является их относительная (по сравнению со стеклопластиками) дороговизна. Однако по мере более широкого применения этих материалов их стоимость будет неуклонно снижаться.