Космос. Эволюция Вселенной, жизни и цивилизации — страница 65 из 76

В течение нескольких недель обсерватория Аресибо могла бы передать сравнимой с ней обсерватории на планете у одной из ближайших звезд полный текст Британской энциклопедии. Радиоволны движутся со скоростью света, в 10 000 раз быстрее, чем сообщение, отправленное на самом быстром из наших межзвездных аппаратов. В узком частотном диапазоне радиотелескопы способны порождать мощные сигналы, которые нетрудно обнаружить даже на громадных межзвездных расстояниях. Знай мы точно, куда направить сигнал, обсерватория Аресибо смогла бы поддерживать связь с таким же телескопом на планете, удаленной на 15 000 световых лет, что составляет полпути до центра нашей Галактики. При этом радиоастрономия — это естественная технология. Независимо от своего химического состава атмосфера почти любой планеты прозрачна для радиоволн. Радиоизлучение лишь незначительно поглощается и рассеивается межзвездным газом. Так, радиосвязи между Сан-Франциско и Лос-Анджелесом не мешает смог, значительно ухудшающий оптическую видимость уже на расстоянии нескольких километров. Существует множество естественных космических радиоисточников, не имеющих ничего общего с разумной жизнью: пульсары и квазары, радиационные пояса планет и внешние области звездных атмосфер. На любой планете подобные яркие источники будут открыты на ранних стадиях развития радиоастрономии. Кроме того, радиодиапазон занимает значительную часть электромагнитного спектра. Любая технология, способная детектировать излучение на какой угодно другой длине волны, очень скоро обнаружит и существование радиодиапазона электромагнитного спектра.

Возможно, есть и другие эффективные средства межзвездной связи, имеющие существенные преимущества: звездолеты, оптические и инфракрасные лазеры, нейтринные импульсы, модулированные гравитационные волны или что-то иное, до чего мы не доберемся еще тысячу лет. Быть может, развитые цивилизации далеко ушли от использования радио в своих коммуникациях. Но радио — это мощный, дешевый, быстрый и простой метод. Они должны знать, что подобные нашей отсталые цивилизации, желающие получать сообщения из космоса, скорее всего обратятся именно к радиосвязи. И может статься, они вытащат радиотелескопы из своего Музея древних технологий. А если мы получим радиосообщение, то будем знать, что существует по крайней мере одна вещь, о которой мы можем беседовать, — радиоастрономия.

Но существует ли там кто-нибудь, желающий разговаривать с нами? Может ли оказаться, что из всех звезд, которых только в нашей Галактике треть или половина триллиона, лишь одна имеет подле себя обитаемую планету? Насколько более вероятно, что технические цивилизации — совершенно заурядное для космоса явление, что Галактика гудит и пульсирует от обилия высокоразвитых социумов, а значит, ближайшая из таких культур где-то неподалеку и, быть может, передает сигналы антеннами, установленными на планете у одной из звезд, видимых невооруженным глазом, буквально у нас за порогом. Быть может, в то самое время, когда мы ночью глядим в небо, возле одной из этих слабосветящихся точек, в ином мире, кто-то совершенно непохожий на нас в задумчивости рассматривает звезду, которую мы называем Солнцем, и хотя бы на миг предается невероятным фантазиям.

Об этих вещах очень трудно говорить с уверенностью. На пути развития технологической цивилизации могут встретиться серьезные препятствия. Не исключено, что планеты — гораздо более редкое явление, чем нам представляется. Вполне возможно, что возникновение жизни гораздо более сложный процесс, чем заставляют предположить наши лабораторные эксперименты. Возникновение в ходе эволюции сложных форм жизни может оказаться крайне маловероятным событием. Или есть шанс, что высокоразвитые формы жизни возникают относительно легко, но вот появление разума и технологических обществ требует невероятно редкого стечения обстоятельств — подобно тому как развитие человеческого вида зависело от исчезновения динозавров и от ледникового периода, приведшего к деградации лесов, в кронах которых перекликались еще смутно осознающие себя наши предки. А может быть, на неисчислимых планетах Млечного Пути периодически с неизбежностью возникают цивилизации, но они, как правило, нестабильны, неспособны, за редчайшими исключениями, совладать со своими же технологиями, они гибнут от собственной жадности и невежества, загрязнения окружающей среды и ядерных войн.

Продолжая исследование этого обширного вопроса, можно грубо оценить величину N — число развитых технологических цивилизаций в Галактике. Будем считать развитой цивилизацию, освоившую радиоастрономию. Конечно, это определение, если оно вообще приемлемо, является весьма узким. Может существовать бессчетное число миров, обитатели которых преуспели в лингвистике или поэзии, но совершенно безразличны к радиоастрономии. Мы о них не узнаем. Величину N можно вычислить как произведение ряда множителей, каждый из которых является своего рода фильтром, и ни один не должен быть слишком мал, чтобы могло существовать значительное число цивилизаций: N* — число звезд в Галактике; fp— доля звезд, имеющих планетные системы; пe— среднее число планет в одной системе с экологическими условиями, пригодными для жизни;

fl— доля подходящих для жизни планет, на которых в действительности появилась жизнь;

fi— доля обитаемых планет, на которых возникла разумная жизнь;

fс — доля населенных разумными существами планет, на которых возникли развитые технологические цивилизации;

fL— доля от общего времени жизни планеты, на протяжении которого на ней существует технологическая цивилизация.

В результате получается следующая формула:


N = N* — fpne• fl• fi• fc• fL


Все множители f являются долями, и их значения заключены между 0 и 1. Каждый из них уменьшает огромное значение N*.

Для вычисления N необходимо определить все указанные величины. Мы довольно много знаем о первых множителях формулы — о числе звезд и планетных систем. Но нам почти ничего не известно об остальных множителях, касающихся эволюции разума и длительности существования технологических обществ. Здесь используемые нами значения — лишь немногим более чем догадки. Если вы не согласитесь с приведенными ниже моими оценками, я предлагаю вам самим выбрать более подходящие значения и посмотреть, к каким выводам о числе высокоразвитых цивилизаций в Галактике приведут ваши альтернативные предположения. Одно из главных достоинств этой формулы, которая была первоначально предложена Фрэнком Дрейком из Корнелла, состоит в том, что она учитывает очень широкий круг вопросов — от звездной и планетной астрономии до органической химии, эволюционной биологии, истории, политики и психических отклонений. Почти весь Космос нашел отражение в формуле Дрейка.

Благодаря тщательным подсчетам звезд в небольших, но репрезентативных участках неба мы довольно точно знаем величину N* — число звезд в нашей Галактике. Оно составляет несколько сот миллиардов; последние оценки дают значение около 41011. Очень немногие из этих звезд относятся к массивным короткоживущим типам, которые безрассудно растрачивают свои запасы термоядерного топлива. Срок жизни подавляющего большинства звезд составляет миллиарды и более лет, в течение которых они стабильно светят, представляя собой подходящий источник энергии для порождения и эволюции жизни на близлежащих планетах.

Есть основания считать, что звездообразование довольно часто сопровождается появлением планет. Об этом говорит знакомство со спутниками Юпитера, Сатурна и Урана, образующими миниатюрные подобия Солнечной системы, и теорией образования планет, изучение двойных звезд, наблюдения аккреционных дисков вокруг звезд и некоторые предварительные исследования гравитационных возмущений в движении близких к нам звезд. Многие звезды, а возможно даже большинство их, имеют планеты. Мы примем долю звезд fp, имеющих планеты, примерно равной 1/3. Тогда общее число планетных систем в Галактике N fp≈ 1,3 • 1011. Если в каждой системе имеется, как в нашей, около десяти планет, тогда в Галактике должно быть более триллиона миров — громадная сцена для космической драмы.

В нашей Солнечной системе наличествует несколько тел, которые могли бы подойти для некоторого вида жизни. Это, конечно, Земля, а также, возможно, Марс, Титан и Юпитер. Однажды появившись, жизнь проявляет крепкую хватку и очень высокую способность к адаптации. В каждой планетной системе должно существовать много разных сред, пригодных для существования жизни. Но мы будем консервативны и положим пе= 2. В таком случае число подходящих для жизни планет в Галактике составит N*fpne≈ 3 • 1011.Эксперименты показывают, что в самых обычных для космоса условиях молекулярная основа жизни — блоки, из которых строятся способные к самовоспроизведению молекулы, — возникает довольно легко. Здесь мы ступаем на зыбкую почву. Например, на пути эволюции генетического кода могут встретиться непреодолимые препятствия, но с учетом миллиардов лет существования первичного химического состава подобное кажется мне маловероятным. Примем значение fl1/3, что дает нам общее число планет в Галактике, на которых хотя бы однажды появлялась жизнь, N*fpnefl≈ 1•1011, сто миллиардов обитаемых миров. Этот вывод уже сам по себе замечателен. Но мы еще не закончили.