Для экспериментов на животных также изготавливают координатные системы, соответствующие виду животного и задачам исследования. Очень подходит для экспериментов с ультразвуком лягушка — животное, приспособленное к обитанию в воде. Передачу ультразвуковой энергии лягушке можно осуществлять в воде, что значительно уменьшает потери акустической энергии по сравнению с другими жидкими средами и тем более воздухом. Одна из таких систем схематично изображена на рис. 20. Излучатель неподвижен. Животное располагается в ванночке с отверстием, через которое проходит ультразвук. Ванночку можно передвинуть ближе или дальше по отношению к излучателю, меняя тем самым расположение центра фокальной области. Не будем останавливаться на деталях совмещения центра фокальной области с местом воздействия ультразвуком, так как они различны в зависимости от задач исследования, требований к точности совмещения и оценки результатов.
Рис. 20. Схема экспериментальной установки для воздействия фокусированным ультразвуком на слуховой лабиринт лягушки.
1 — обездвиженная лягушка в воде, 2 — пластина, на которой расположено животное, 3 — перемещающаяся по вертикальной оси ванночка с водой, 4 — кожух фокусирующего излучателя, 5 — фокусирующий излучатель ультразвука, 6 — расположение центра фокальной области излучателя, 7 — звуковой динамик, 8 — вода.
Вернемся к человеку. Если при совмещении фокальной области излучателя с улитковым лабиринтом подавать ультразвук непрерывно, то он не вызовет каких-либо слуховых ощущений. Напомним, что речь идет об ультразвуке частотой в диапазоне 0.4—5 МГц. При действии ультразвука частотой ниже 0.225 МГц слуховое ощущение возникает. Это очень высокий тон, причем его высота остается постоянной с изменением частоты ультразвука. С увеличением частоты от 20 кГц — верхней границы слухового диапазона — до 225 кГц возрастают лишь пороги слухового ощущения. Итак, в нашем случае непрерывно излучаемый ультразвук не вызывает слуховых ощущений. Однако стоит только применить импульсы ультразвука длительностью, например, около 1 мс каждый с разной частотой их следования или промодулировать ультразвук по амплитуде каким-либо сигналом из диапазона слышимости человека, как появится слуховое ощущение в соответствии с частотой следования стимулов (импульсов) или с частотой и характером амплитудной модуляции. Допустим, модуляция производилась синусоидальными сигналами или речью — человек услышит соответственно чистый тон или речь. Если предъявлять отдельные импульсы ультразвука, будут слышаться щелчки.
В экспериментах на лягушках использовали как ультразвуковые, так и звуковые стимулы. Регистрировали электрическую активность, вызванную стимулами в слуховой зоне среднего мозга. Оказалось, что можно подобрать звуковые и ультразвуковые стимулы таким образом, что они при околопороговых интенсивностях вызывали сходные электрические ответы. При увеличении интенсивности ответы на ультразвук менялись по сравнению с ответами на звук. Уменьшался скрытый период, т. е. время от начала предъявления стимула до появления электрического ответного сигнала; круче возрастала амплитуда сигнала, а последующее ее уменьшение становилось более пологим. Особенно отчетливо различия выступали при интенсивности звуковых и ультразвуковых стимулов выше 35—40 дБ над порогом обнаружения ответной реакции.
Различия в характере ответных электрических реакций на звук и ультразвук дали основание предполагать, что при небольших интенсивностях звук и ультразвук активируют преимущественно рецепторный аппарат. С увеличением интенсивности ультразвук начинает активировать проводниковые структуры, в частности волокна слухового нерва. Исследования с применением гистохимических методов окраски слуховых рецепторных клеток и волокон слухового нерва в сочетании с электрофизиологическими данными подтвердили, что при интенсивностях до 35—40 дБ над порогом действие звука и ультразвука сходно. При больших интенсивностях ультразвука рецепторные клетки отвечают признаками утомления, а электрический ответ возникает преимущественно в результате активации ультразвуком волокон слухового нерва. Активирующее действие ультразвука на волокна подтвердилось в экспериментах с разрушением рецепторного аппарата. В этих случаях электрические ответы из слуховых областей среднего мозга регистрировались при интенсивности ультразвука около 40 дБ и выше над порогом ответной реакции функционирующего рецепторного аппарата и были аналогичны уже описанным ответам, отличавшимся от реакции на звук.
Как уже указывалось, наблюдения на животных имеют аналогии в клинико-физиологических исследованиях. Известно, что у некоторых людей глухота вызвана поражением рецепторного аппарата. Таким людям не помогает лекарственное и оперативное лечение. Медицина пока лишена возможностей восстанавливать рецепторы. Не помогают также современные слуховые аппараты, являющиеся по существу миниатюрными усилителями звука. И это вполне понятно: как ни усиливай звук, человек все равно не услышит его, если не имеет соответствующего приемника — рецепторного аппарата. В то же время установлено, что у большинства таких людей в какой-то степени сохранена функция волокон слухового нерва. Начиная с 1957 г. за рубежом предпринимаются попытки активировать волокна электрическим током с помощью электродов, вводимых в слуховой нерв или в ушной лабиринт. Попытки бывают успешными: под действием тока у человека возникают слуховые ощущения. Применяя различные электрические сигналы, подаваемые через электроды, удается ранее глухим людям вводить слуховую информацию. После специального обучения некоторые из них оказываются способными воспринимать достаточно сложную информацию, в том числе музыку и речь.
Если ушной лабиринт человека из такого контингента глухих подвергнуть действию фокусированного ультразвука, человек также может услышать. Это — одно из подтверждений действия ультразвука на волокна слухового нерва. Как и в экспериментах на животных с разрушенным рецепторным аппаратом, пороги слуховых ощущений, вызванных ультразвуком, повышены по сравнению с порогами здоровых людей, причем на те же 35—40 дБ. Сходство проявляется и в ограничении динамического диапазона: слуховые ощущения глухого человека и электрические реакции из слуховых центров среднего мозга у животных с разрушенным рецепторным аппаратом проявляются в диапазоне всего 10—15 дБ. При дальнейшем усилении стимуляции животных сначала прекращается увеличение, а затем возникает уменьшение амплитуды ответа, появляется опасность повреждающего действия ультразвука, о чем свидетельствуют морфологические исследования. У человека при соответствующих интенсивностях стимуляции перестает увеличиваться громкость, а в месте контакта мешка с водой, в которую погружен излучатель, и кожи возникает ощущение тепла. Тепло, в данном случае побочный феномен, оказалось весьма полезным, так как служит предостережением от слишком сильных ультразвуковых воздействий.
Результаты исследований выдвигают вопрос, можно ли использовать ультразвук для протезирования глухих. Несмотря на получение у некоторых глухих людей слуховых ощущений с помощью ультразвука, положительно ответить сейчас на этот вопрос не представляется возможным. Во-первых, неизвестно, как долго можно пользоваться безопасно ультразвуковыми воздействиями даже небольших интенсивностей; во-вторых, нет еще достаточно портативных приборов, позволяющих осуществлять воздействие. Наконец, надо полагать, что как и при электроимплантационном протезировании, т. е. при стимуляции нервных волокон электрическим током с помощью электродов, введенных в улитку или слуховой нерв, при ультразвуковом воздействии потребуется обучение по индивидуальным программам, составленным в соответствии с функциональными возможностями сохранившихся нервных волокон и особенностями нервной системы человека.
Клинические исследования на больных с разными формами нарушений слуха показали целесообразность использования разных режимов воздействия фокусированным ультразвуком в качестве дополнительных диагностических методов. Диагностика поражений слуха чаще всего складывается из аудиологического и оториноларингологического обследований. Иногда привлекают дополнительные методы: рентгеновский, исследование функции вестибулярного аппарата, лицевого нерва и т. д.
Основу аудиологического обследования составляет тональная аудиометрия. Она преследует цель получить частотно-пороговую характеристику слуха по воздушной и костной проводимости. Слуховые пороги измеряют не во всем диапазоне слышимости, это было бы чрезвычайно трудоемко, а на фиксированных октавных частотах, т. е. последовательно увеличивающихся вдвое от 125 до 8000 Гц. Ухудшение слуха — повышение порогов слуховых ощущений — оценивают в децибелах от порогов нормально слышащих.
Подобно аудиограмме, можно получить частотно-пороговую кривую при действии на улитковый лабиринт фокусированного ультразвука. Для лучшего сопоставления с аудиограммой ультразвук можно модулировать по амплитуде синусоидальными колебаниями аудиометрических частот. Такая кривая незначительно отличается от аудиограммы нормально слышащих людей и значительно — у больных с нарушениями слуха. Отличается она и от аудиограммы этих больных. Для некоторых заболеваний различия весьма типичны и поэтому могут быть использованы в диагностике. Например, фокусированный ультразвук оказался полезным в диагностике отосклероза, заболевания, проявляющегося в ограничении подвижности слуховых косточек, которое сопровождается ухудшением слуха. При отосклерозе слух снижен главным образом по воздушной проводимости, т. е. когда звук распространяется по воздуху и с помощью ограниченно подвижных слуховых косточек. Если механические колебания поступают к рецепторному аппарату с участием костно-тканевой проводимости, слуховые пороги повышаются незначительно. Диагноз обычно ставится с учетом течения заболевания, сведений о состоянии слуха у родителей и родственников, осмотре уха и данных аудиограммы, на которой слуховые пороги по костной проводимости ниже воздушных порогов.