Кости: внутри и снаружи — страница 26 из 52

В последние годы аналогичным образом лечат серьезные дефекты коленного хряща. Хирург берет небольшие образцы ткани на краю коленного сустава пациента, где это не повредит здоровью, и отправляет их в лабораторию для воспроизведения. Примерно через месяц на проблемное место кладут мембрану и вводят в нее миллионы пра-пра-и-так-далее-правнуков тех самых исходных хрящевых клеток. Они соединяются между собой и восстанавливают гладкую поверхность сустава.

Помогут ли такого рода методики исправить дефекты скелета? Как хорошо было бы заменить расколотую, инфицированную или пораженную опухолью кость новой, выращенной в лаборатории из собственных клеток больного! Специалисты по тканевой инженерии экспериментируют с передовыми технологиями, но в случае кости надо устранить ряд трудностей, которых нет при лабораторном выращивании кожи и хряща.

Коже достаточно простого временного каркаса – пористой биоразлагаемой мембраны. Хрящу опора не нужна: клетки взвешены в жидкости и вводятся в скрытый под кожей дефект. Клеткам кости необходима жесткая трехмерная опора, устойчивая к сгибающим, скручивающим и сдавливающим силам. Опора должна иметь каналы для кровеносных сосудов. Если каналы окажутся слишком узкими, капилляры не смогут проникнуть внутрь каркаса и снабжать остеобласты питательными веществами. Слишком широкие каналы ослабят каркас, и он может не выдержать.

Есть и другая сложность. Организму требуются миллионы остеобластов, и не у каждого пациента найдется достаточное количество донорской костной ткани. Биологи рассматривают стволовые клетки как альтернативу выращиванию костных клеток в лаборатории. Стволовые клетки можно сравнить с «бейсболистом-универсалом»: сегодня во второй базе, завтра в позиции кетчера и так далее в зависимости от потребностей команды. «Высшая» стволовая клетка – это оплодотворенная яйцеклетка. Она многократно делится, и ее потомство со временем дифференцируется в сердечную мышцу, нервы, кожу, кость и все остальные поразительные типы клеток, из которых состоит организм новорожденного. С возрастом стволовые клетки постепенно исчезают, так что для получения остеобластов лучше всего подошли бы стволовые клетки эмбриона, если бы не вопросы этического характера, связанные с применением оплодотворенных человеческих яйцеклеток в этих целях.

Расскажу еще о нескольких заманчивых вариантах. Стволовые клетки можно собрать из костного мозга и циркулирующей крови взрослого человека, но там их совсем мало. А вот в жировой ткани, в которой современные американцы недостатка не испытывают, стволовых клеток больше – соответственно, липосакция не только подкорректирует фигуру, но и обеспечит вас материалом для получения любой необходимой ткани. Молочные зубы – еще один источник стволовых клеток, и вам даже не придется прокалывать кожу. Подождите, пока зуб выпадет, отгоните Зубную фею, положите зуб на лед – и бегом в лабораторию, которая за определенную плату будет хранить его в морозильной камере. Если владельцу зуба потребуется инженерия тканей (например, через десятки лет), запас стволовых клеток ему поможет. Как здорово: достал из морозилки пробирку – и вперед! Конечно, при условии, что банк клеток к тому времени не закроется, а оборудование будет работать без перебоев. Банки стволовых клеток кажутся сумасбродной идеей, но, если мне когда-нибудь понадобятся эти «универсальные бейсболисты», я пожалею, что продал свои молочные зубы Зубной фее по четвертаку штука.

Допустим, у нас есть стволовые клетки, которые поддались на уговоры ученых и «согласились» стать остеобластами, есть и каркас для них. Все готово? Я бы так не сказал. Для успешного выращивания костной ткани нужно преодолеть еще как минимум три препятствия. Во-первых, заставить клетки прилипнуть к каркасу и добраться до самых дальних уголков. Во-вторых, для снабжения остеобластов едой и питьем индуцировать врастание капилляров. В-третьих, чтобы остеобласты процветали, делились и создавали новую кость, они должны получить химические любовные послания от гипофиза, щитовидной железы и половых желез (семенников или яичников).

Еще одна новая технология – послойное, или аддитивное, наращивание – дала толчок развитию тканевой инженерии. Эта технология более известна как трехмерная печать и уже произвела революцию в промышленном производстве и биоинженерии. Ученые выращивают искусственные органы (почки, печень, сердце), слой за слоем добавляя клетки и формируя элементы каркаса. А вот печатать аналогичным образом кость мешает присущая ей твердость. Представьте, что будет, когда метод доведут до совершенства. Если вам понадобится новая кость, просто выньте из морозильника свой молочный зуб, возьмите из него стволовые клетки, отнесите их в местное фотоателье с 3D– или, может быть, 4D-принтером. Появится трехмерный предмет, который будет менять форму, как оригами, – по истечении времени либо под действием тепла, влаги или света. Такой имплантат можно вживить через миниатюрный разрез и уже внутри дорабатывать его форму для завершения реконструкции.

Инженерия живой костной ткани пока лишь маячит на горизонте, а вот в ортопедической хирургии аддитивное наращивание уже применяют на практике. На основе данных, полученных путем МРТ или КТ, 3D-принтер может напечатать полномасштабную пластиковую модель разрушенной кости. Сидя за столом, ортопед изучает размеры и форму фрагментов перелома и планирует фиксацию. Особенно полезно 3D-моделирование для мест со сложными контурами, например для локтя, таза, пятки. Хирург спокойно рассматривает перелом со всех сторон, может заранее согнуть пластины, определить длину необходимых винтов и максимально эффективно провести операцию. Кроме того, полноразмерные модели – наглядное пособие для студентов и пациентов.

Не за горами тот день, когда с помощью технологий послойной печати врачи начнут делать индивидуальные устройства фиксации для сложных переломов. Затем появится возможность печатать уникальные протезы костей и суставов, а стандартные компоненты станут не нужны. Прежде ортопедические приспособления создавали традиционными методами, и это занимало не одну неделю. В будущем пациент с переломом запястья или лодыжки просто дождется, пока врач изготовит у себя в кабинете протез или скобу: сначала аппарат отсканирует под множеством углов место повреждения, затем данные отправятся на принтер, который напечатает точно подходящий по форме слепок любого цвета. Ортопедическое устройство надежно и бережно зафиксирует отекшую лодыжку и не будет давить на болевые точки.

Для изготовления ортопедических пластин и винтов – как стандартных, так и индивидуальных – мы научимся применять различные неметаллические материалы, в том числе легкое, прочное углеродное волокно. Оно рентгенопрозрачное, поэтому рентгеновские лучи проходят сквозь такие имплантаты, не создавая теней, что позволяет полностью визуализировать перелом даже под пластиной.

Рентгенопрозрачные имплантаты будут не просто индивидуальными – они исчезнут, сделав свое дело. Вспомним, как менялись ортопедические пластины и винты. Всего чуть более ста лет назад хирурги брали первые попавшиеся детали из мастерской или найденные у жен принадлежности для шитья. К сожалению, железо и алюминий быстро разрушались под действием соленой жидкости внутри организма. Затем появилась нержавеющая сталь, и ортопеды с энтузиазмом напридумывали уйму разных винтов и пластин. Позднее широкое распространение получили титановые устройства – об их преимуществах я уже рассказывал. А как насчет деталей, которые будут держать перелом ровно до тех пор, пока кость не заживет, а потом рассосутся?

Сразу после фиксации перелома имплантат обеспечит сопротивление сгибающим и скручивающим силам. По мере восстановления костной ткани пластина начнет постепенно исчезать, передавая механическую нагрузку на саму кость. Пьезоэлектрические силы, возникающие благодаря контролируемому напряжению, будут побуждать режущие конусы укреплять костную ткань. Со временем необходимость в пластине отпадет, и она полностью рассосется. Ученые уже десятки лет смешивают различные полимеры, в том числе получаемые из кукурузного крахмала, и отливают из них пластины и винты. Но инженерам еще предстоит подобрать рецепт, который соединит в себе достаточную прочность, минимальный объем, низкую реактивность тканей, а также долговечность и жесткость. Когда такой материал появится, хирург сможет печатать на 3D-принтере индивидуальные пластины, пока будет мыть руки и надевать халат и перчатки перед фиксацией перелома. Повторная операция, которая сегодня требуется для удаления металлических пластин и винтов, больше не понадобится: организм сам разберет биоразлагаемый фиксатор на молекулы.

Сейчас в любой больнице, где проводятся ортопедические операции, имеется целый арсенал специальных устройств: коробками и подносами с этими принадлежностями заставлены полки и шкафы. Пластины из титана и нержавейки варьируются по длине – от двух до тридцати сантиметров; винты также различаются резьбой и размерами – от трех миллиметров до десяти сантиметров. Что-то из этого никогда не пригодится, но на всякий случай нужно держать под рукой полный набор. Один 3D-принтер с запасом подходящего биоразлагаемого материала превратит этот склад металлических деталей в пережиток прошлого.


Традиционные пластины из нержавеющей стали, длинная и короткая, фиксируют множественные переломы плечевой кости (a). Аналогичный перелом с инновационной пластиной из углеволокна, закрепленной обычными металлическими винтами. Пластина не задерживает пучок рентгеновских лучей и заметна только благодаря тонкой стальной проволоке по краям (b)

Clifton Meals, MD (a); Alidad Ghiassi, MD (b)


Малоинвазивная хирургия – еще одна область быстрого развития технологий. В ортопедии ее история началась с артроскопии коленного сустава: сделал пару небольших разрезов на коже, вставил световой меч и телекамеру, поработал тоненькими инструментами, вуаля – и спортсмен возвращается в игру. Тот же алгоритм используется при восстановлении мышц вращательной манжеты плеча.