Открывая атомные ядра
Основное открытие, которое привело к современным успешным атомным моделям, было сделано Гансом Гейгером и Эрнестом Марсденом в 1911 г. Работая в лаборатории Резерфорда и реализуя его идею, Гейгер и Марсден изучали отклонение тонким слоем золотой фольги альфа-частиц, испускаемых при радиоактивном распаде радия. Они наблюдали случаи сильного отклонения. Резерфорд рассказывал об этом эпизоде так:
Это было самым потрясающим событием из всех, что случались со мной в жизни. Это было почти так же невероятно, как если бы вы выстрелили 15-дюймовым [артиллерийским] снарядом в кусочек папиросной бумаги, а он бы отлетел назад и попал в вас. Подумав, я понял, что такое обратное рассеяние должно быть результатом единственного столкновения, и когда я произвел расчеты, я увидел, что можно было получить что-либо близкое к такому порядку величины, если только взять систему, в которой большая часть массы атома сосредоточена в мельчайшем ядре. И именно тогда у меня появилась идея атома с очень маленьким массивным центром, несущим заряд…
Резерфорд предложил определенную, удивительно простую модель, объяснявшую наблюдения. Он предположил, что в каждом атоме есть крошечное ядро, содержащее весь его положительный заряд и практически всю его массу. Это могло объяснить редкое, но мощное обратное рассеяние – ядро не хочет двигаться (потому что оно тяжелое) и оно способно оттолкнуть альфа-частицу (так как в нем сконцентрирован заряд). Резерфорд сделал это рабочей моделью и подтвердил ее, количественно объяснив рассеяния на большие углы. Остальная часть атома, согласно Резерфорду, состояла из гораздо более легких отрицательно заряженных электронов, каким-то образом распределенных по гораздо большему объему.
Это был эпохальный результат. Он показал, что понимание структуры атома можно удобно разделить на две задачи. Первая задача – то, что мы сейчас называем атомной физикой, – это рассматривать тяжелое, положительно заряженное ядро как данность и после этого определять, как с ним связываются электроны. Мы обсудили эту область квантовой красоты до этого.
Вторая задача – то, что мы сейчас называем ядерной физикой, – это понять, из чего сделаны эти центры атомов и каким законам они подчиняются.
Быстро стало ясно, что одни лишь электрические силы не могут объяснить физику ядер. Действительно, чисто электрическая модель не могла решить проблему с концентрацией положительного заряда в ядре атома. Не будучи уравновешена другой, более мощной силой, сила электрического отталкивания должна была разорвать ядро на части. Гравитация? При таких крошечных массах ей можно полностью пренебречь. За это должны были отвечать новые силы, неизвестные классической физике.
Ядерная физика поставила две задачи: экзистенциальную и динамическую. Экзистенциальная заключается в том, чтобы определить ингредиенты ядер, а динамическая – в том, чтобы понять силы, с которыми эти составляющие действуют друг на друга. С переписью ингредиентов расправились через несколько лет, и это было довольно просто. Один компонент был более или менее очевиден. Ядро водорода стабильно, (по всей видимости) неделимо и имеет единичный (положительный) электрический заряд. Оно самое легкое из всех ядер, и другие легкие ядра имеют массы, близкие к целому числу его масс. Следовательно, этот протон – названный так Резерфордом – один из ингредиентов.
Второй компонент был открыт Джеймсом Чедвиком в 1932 г. Нейтрон – это электрически нейтральная частица лишь чуть-чуть тяжелее протона. Его открытие дало нам простое, но полезное представление о том, что такое атомные ядра: они являются совокупностью протонов и нейтронов, связанных друг с другом. С таким представлением многие наблюдаемые факты встали на свои места. Например, ядра разных химических элементов различаются только числом протонов, которые они содержат, поскольку это число определяет электрический заряд ядра, от которого зависит его взаимодействие с окружающими атом электронами, последние же в свою очередь обуславливают его химию. Разное количество протонов в ядре дает атомы различных химических элементов. С нейтронами в качестве второго игрока мы решаем загадку изотопов. Атомы, содержащие изотопические ядра, имеют одинаковые химические свойства, но различаются по массе. Их ядра содержат одинаковое число протонов, но разное число нейтронов. Таким образом, простая модель атомного ядра, состоящего из протонов и нейтронов, объясняла одновременно разнообразие химических элементов и существование изотопов.
Считалось, что следующим шагом будет выяснить, какие силы действуют между протонами и нейтронами и удерживают их вместе. Как мы уже говорили, нужны были новые силы, поскольку электромагнитное взаимодействие стремится разорвать ядра на части, а гравитационное столь слабо, что им можно пренебречь.
Однако эксперименты по исследованию ядерных сил вскоре пошли неожиданными путями. Практически все они следовали стратегии первоначального эксперимента Гейгера – Марсдена. Чтобы исследовать, скажем, взаимодействие между протонами, пучком протонов стреляли по другим протонам (по водородной мишени) и следили за тем, что из этого получается. Наблюдая отклонения на разные углы, можно попытаться сделать выводы об ответственной за это силе. Использование пучков с протонами различных энергий и с протонами, вращающимися в разных направлениях, улучшает анализ. Эксперименты такого типа вскоре показали, что силы, действующие между протонами и нейтронами, не подчиняются простому уравнению. Они зависят не только от расстояния, но и от скорости и спина, причем сложным образом.
Если смотреть глубже, эксперименты вскоре похоронили надежду – надежду нашего Вопроса – на то, что протоны и нейтроны являются простыми частицами и что какая-нибудь красивая «сила», в традиционном понимании этого слова, могла бы объяснить то, что на самом деле происходит при их взаимодействии. Потому что, когда протоны сталкивались с другими протонами, результатом обычно являлось не просто отклонение двух сталкивающихся частиц. Вместо этого появлялся целый поток частиц!
В сущности, эксперименты, направленные на открытие простой силы, вместо этого обнаружили новый и неожиданный мир частиц. Мезоны p, ρ, K, η, ρ, ω, K*, ϕ и барионы Λ, ∑, Ξ, ∆, Ω, ∑*, Ξ*, Ω являются самыми легкими и самыми доступными из них. (Существуют десятки других.) Эти частицы, все без исключения, очень нестабильны и живут не больше микросекунды (а в большинстве случаев гораздо меньше). Выводы об их существовании и свойствах должны быть сделаны на основе изучения продуктов их распада в детекторах на ускорителях высоких энергий, таких как ускорители в Брукхейвенской национальной лаборатории, в Фермилабе и в CERN. Эти новые частицы все вместе называются адронами.
Так же как классификация бабочек или палеонтологическая история лошадей, состав адронного «зверинца» и характеристики его обитателей – массы, спины, времена жизни, варианты распадов – завораживают истинных ценителей. Однако, чтобы продвинуться в нашем поиске красоты к основам, мы должны перейти к более общим вопросам. Для дальнейшего использования позвольте мне кратко резюмировать два наиболее важных урока, которые можно извлечь из этого «зверинца».
Адроны состоят из двух царств – барионов и мезонов[71]. Протоны и нейтроны являются прототипом барионов. Все барионы обладают несколькими общими свойствами. Все они испытывают на малых дистанциях сильное взаимодействие в присутствии друг друга либо в присутствии мезонов, и (для экспертов) все они являются фермионами. Мезоны также обладают общими свойствами. Все они испытывают на малых дистанциях сильное взаимодействие в присутствии друг друга либо в присутствии барионов, и (для экспертов) все они являются бозонами.
Протоны и нейтроны не являются ни простыми, ни фундаментальными. Представить себе атомное ядро состоящим из протонов и нейтронов было полезным шагом, но эти частицы не являются простыми или фундаментальными – их взаимодействия сложны, и они являются лишь двумя членами гораздо более широкого семейства похожих частиц. Чтобы посмотреть на них с правильной перспективы и завершить анализ материи, нужен новый и более широкий взгляд.
Кварковая модель
Кварковая модель была придумана Мюрреем Гелл-Манном и Джорджем Цвейгом и стала блестящей демонстрацией силы воображения и распознавания образов.
Согласно кварковой модели, барионы – это связанные состояния трех более фундаментальных сущностей – трех видов, или «ароматов», кварков: верхнего u, нижнего d и странного s. (Пока этого достаточно, и я отложу рассмотрение гораздо более тяжелых, крайне нестабильных кварков c, b, t на потом.)
Но как всего три аромата кварков – u, d, s – порождают сотни различных барионов? Дело в том, что некая заданная тройка кварков, скажем, u, u, d, может существовать во многих различных состояниях движения, аналогичных дискретным боровским орбитам электронов в атомах или стационарным состояниям на илл. 26 в главе «Квантовая красота I». Эти дискретно различные состояния имеют различные энергии и, следовательно, – если применить формулу m = E/c² – разные массы. Поэтому, с точки зрения экспериментатора, они кажутся разными частицами! Таким образом, мы обнаруживаем, что множество разных частиц отражает одну и ту же материальную структуру, лежащую в их основе и зафиксированную в различных состояниях внутреннего движения.
Сходным образом кварковая модель постулирует, что мезоны – это связанные состояния одного кварка и одного антикварка. Каждая пара кварк-антикварк, скажем, в различных состояниях движения образует множество различных мезонов.
Кварковая модель также дает правдоподобное объяснение сложности адронных сил. Даже если отдельные кварки взаимодействуют просто, но, когда связанные состояния из трех кварков или из кварка и антикварка встречаются друг с другом, существует большой простор для наводок и взаимоподавления. Примерно по тем же причинам обычная химия, основанная на взаимодействиях атомов, оказывается сложной и разнообразной, хотя силы между отдельными электронами, на которых она основана, чрезвычайно просты.
Кварковая модель была главным шагом в упорядочении адронного «зоопарка». Она предоставляет описание адронов, подобное по его объяснительной силе боровской модели атома. Но кварковая модель, как и модель Бора, имеет ограничения. Хотя она правильна по своему духу и исторически важна, кварковая модель является логически неполной и только полуматематической. Кроме того, она столкнулась с большой проблемой, что мы сейчас и обсудим.
Кварковая модель дала успешное описательное объяснение многих свойств протонов, нейтронов и родственных им адронов. Но она постулировала некоторые очень странные свойства для кварков. Возможно, самым странным из таких свойств является конфайнмент, шутливо изображенный на карикатуре на вклейке MM – она взята из плаката, который ознаменовал мою Нобелевскую премию. Предполагается, что кварки являются строительными блоками протонов, но, несмотря на очень большие усилия, свободные частицы со свойствами кварка (такими как дробный заряд, равный 2⁄3 или −1⁄3 электрического заряда протона) никогда не наблюдались. Таким образом, кварки в группах по три штуки могут образовывать протоны, в которых силы между ними оказываются умеренными. Но по каким-то причинам они не могут высвободиться – кварки удерживаются вместе, находясь в состоянии конфайнмента.
Чтобы учесть это поведение, нам, похоже, нужны связи между кварками, похожие на пружину или резинку, которые тянут кварк тем сильнее, чем больше растягивается связывающая пружина или резинка при увеличении расстояния. Пружины и резинки, конечно, сами по себе являются сложными физическими объектами, поэтому недопустимо предполагать их наличие в фундаментальной теории. И если мы все же так делаем, возникает вопрос: из чего сделана эта пружина?
Физики привыкли, что фундаментальные силы становятся слабее с расстоянием, как это происходит с гравитационными и электромагнитными силами, и поэтому конфайнмент оказался большой проблемой. Многие физики так не смогли заставить себя отнестись к кваркам серьезно именно из-за этого.
Прорыв: квантовая хромодинамика
Уравнения Максвелла для электродинамики, уравнения Ньютона (и затем Эйнштейна) для гравитации и уравнения Шрёдингера (и затем Дирака) для атомной физики установили высокие стандарты красоты, ясности и точности. Ни сложные уравнения (а в сущности – таблицы), описывающие ядерные силы, ни общие идеи кварковой модели даже близко не подошли к этим стандартам.
И все же красивые, ясные, точные уравнения для сильного взаимодействия существовали. Они пролежали без дела много лет, прежде чем мы смогли их использовать. Это уравнения, которые основываются на уравнениях Максвелла и воплощают те представления, которые мы набросали в первой части этой главы.
Почти 20 лет прошло между формулировкой этих уравнений Янгом и Миллсом и появлением квантовой хромодинамики как их воплощения в реальности. Эта история – ошеломляющий пример соотношения
В сфере сильного взаимодействия не может быть сомнений, что ответ на наш Вопрос
Воплощает ли мир красивые идеи?
прост:
Да, воплощает.
«Максвелл на стероидах»
Квантовая хромодинамика (КХД) использует идеи и уравнения, которые являются грандиозным обобщением уравнений Максвелла для электромагнетизма, расширенным, чтобы включить еще больше симметрии. Мне нравится говорить, что КХД (QCD) выглядит как квантовая электродинамика (КЭД, QED) на стероидах.
В КЭД есть один вид заряда – электрический заряд. Он может быть положительным, как у протонов, или отрицательным, как у электронов, но в любом случае мы определяем его количество при помощи всего одного числа (положительного или отрицательного). А вот КХД содержит целых три вида заряда. Они без какого-либо серьезного основания были названы цветами; для определенности будем называть их красным, зеленым и синим.
В КЭД есть одна частица, переносящая взаимодействие. Это фотон, который отвечает на электрический заряд. А в КХД содержится сразу восемь частиц-переносчиков взаимодействия, названных цветными глюонами. Два из них, подобно фотону, отвечают на цветовой заряд. (А почему не три? Это объясняется в следующем абзаце.) Остальные шесть обеспечивают преобразования из одного цвета в другой. Таким образом, есть глюон, который превращает единицу красного заряда в единицу зеленого заряда, другой превращает единицу зеленого заряда в единицу синего заряда и т. д.
Правило отбеливания – это красивая особенность КХД, которая физически важна, которую довольно легко сформулировать и очень легко продемонстрировать математически, но трудно мотивировать интуитивно. (По крайней мере я не нашел для этого хорошего способа.) Согласно правилу отбеливания, результирующий эффект от наличия единицы красного заряда, единицы зеленого заряда и единицы синего заряда в одном и том же самом месте – нулевой: они взаимно гасятся. (Для экспертов: здесь я предполагаю, что они находятся в антисимметричной конфигурации.) Это смутно напоминает то, как три спектральных цвета (красный, зеленый и синий) могут сложиться и дать нейтральный белый – отсюда и термин «отбеливание» – хотя, конечно, физика этих процессов абсолютно различна. Именно из-за правила отбеливания, которое делает одну комбинацию зарядов бессильной, мы получаем только два, а не три вида глюонов, отвечающих на цветовой заряд.
Каждый кварк переносит одну единицу цветового заряда. Цвет кварка – это независимое свойство, которое мы должны указать в дополнение к таким свойствам, как электрический заряд или масса, и оно никак не менее важно. Однако в отличие от электрического заряда или массы цвет кварка – это не одно число, а три. Точнее сказать, он кодирует позицию в трехмерном пространстве свойств. Существование этих новых видов заряда – основа КХД. Этот факт настолько существенный, настолько красивый и настолько важный для более поздних разработок, что мы просто обязаны сделать обзор его оснований в реальности.
Странная действительность кварков и глюонов
Кварки впервые удалось «увидеть» в экспериментах, проведенных Джеромом Фридманом, Генри Кендаллом и Ричардом Тейлором на Стэнфордском линейном ускорителе в конце 1960-х. В сущности они делали снимки «внутренностей» протонов. При использовании (виртуальных) фотонов очень высоких энергий они смогли достичь хорошего разрешения для очень маленьких расстояний и времен.
Те «снимки» очень многое прояснили! В ретроспективе особенно выделяются три наблюдения.
Протоны содержат кварки. Поскольку снимки были сделаны с использованием фотонов, они смогли запечатлеть распределение электрического заряда в протоне. Они показали, что электрический заряд сконцентрирован в очень маленьких, точечных структурах, а не рассредоточен по ядру. Потрясающее повторение открытия Резерфорда и Гейгера – Марсдена – но теперь уже внутри протона, а не внутри атома! Количество заряда в этих точечных структурах, а также другие свойства совпали с ожиданиями кварковой модели.
В протонах кварки почти свободны. Большинство снимков показывает три кварка и больше ничего, причем позиция каждого кварка оказывается почти не зависимой от позиций других. Отсюда делается вывод, что в пределах протона взаимодействие между кварками слабо. В то же время множество других экспериментов указывают на то, что кварк никогда не покидает протон как отдельная частица. Таким образом, нам нужна сила, которая относительно слаба на коротких расстояниях, но становится мощной на больших расстояниях. Основной парадокс динамики сильного взаимодействия, который мы упоминали ранее, становится высеченным в камне.
Протоны – это гораздо больше, чем просто три кварка. Несколько снимков запечатлели следы дополнительных кварк-антикварковых пар. Это не так уж удивительно: поскольку в протонах запасено много энергии, а кварки обладают очень маленькой массой, создать их столь же легко, как написать формулу m = E/c2 – с очень маленькой m!
Но важнее то, чего не было замечено на снимках. Если сложить всю энергию движения кварков, определенную из наблюдений, получится только около половины той величины, которая составляет полную массу протона. Поскольку фотоны слепы к электрически нейтральным частицам, очевидная интерпретация состоит в том, что в протонах есть некий значительный электрически нейтральный компонент в дополнение к электрически заряженным кваркам. Эта микрокосмическая проблема «темной материи» была первым указанием на то, что протоны – это намного больше, чем просто три кварка. Как мы вскоре увидим, этот недостающий ингредиент представлен цветными глюонами.
Последующие эксперименты при более высоких энергиях показали другой, ярко осязаемый аспект реальности кварков и глюонов. Чтобы увидеть его, рассмотрите, пожалуйста, теперь вклейку NN.
Чтобы описать, что появляется в результате ультравысокоэнергичных столкновений, будь то столкновения электронов с позитронами (как на вклейке NN) или протонов с протонами (как на Большом адронном коллайдере в CERN), проще всего представить, будто мы произвели кварки, антикварки и глюоны – даже при том, что эти частицы не «существуют» (они находятся в состоянии конфайнмента), – и идти от этого к тому, что мы фактически наблюдаем. (Совсем скоро это станет кристально ясно.)
Дело в том, что быстро движущийся кварк, антикварк или глюон материализуются в лаборатории в виде струи адронов, которые движутся почти в одном и том же направлении. Полная энергия и импульс частиц в струе составляют вместе исходную энергию кварка, антикварка или глюона, с которого началась струя, потому что энергия и импульс сохраняются. Поэтому, если мы готовы подсматривать, «идя вместе с потоком», т. е. следить за его энергией и импульсом, забывая, что они поделены среди многих адронов, мы можем увидеть лежащие в основе фундаментальные частицы. Это очень полезно для интерпретации результатов, поскольку мы можем намного лучше предсказывать рождение кварков, антикварков и глюонов, которые повинуются простым уравнениям, чем рождение адронов, которые гораздо сложнее устроены.
Если вы поедете на конференцию по физике высоких энергий в наши дни, то вы услышите, что экспериментаторы спокойно говорят о производстве несуществующих частиц (кварков, антикварков или глюонов) и об измерении их свойств. Это стало стандартным языком в этой области. Конечно, они имеют в виду, что наблюдали соответствующие струи. Таким образом, математически Идеальное становится вполне осязаемым Реальным.
Самоклеящийся клей
Свет свободно проходит через свет. Если бы это было не так, визуальная информация, которую мы получаем от мира, была бы искажена рассеянием, и ее было бы намного сложнее интерпретировать. В КЭД этот простой факт вполне понятен: фотоны реагируют на электрический заряд, но сами фотоны электрически нейтральны.
Самое существенное качественное различие между КХД и КЭД состоит в том, что, в отличие от фотонов, цветные глюоны взаимодействуют друг с другом. Рассмотрим, например, цветной глюон, который превращает единичный красный заряд в единичный синий заряд. Давайте назовем его RB. Когда такой глюон поглощается, полный красный заряд поглотившей его частицы уменьшается на единицу, а ее полный синий заряд увеличивается на единицу. Но поскольку эти заряды сохраняются, мы приходим к заключению, что, если считать его частицей, переносит RB «минус одну» единицу красного заряда и «плюс одну» единицу синего заряда. Он не нейтрален. Другие глюоны, которые изменяют красный или синий заряд или реагируют на них, будут взаимодействовать с RB. И точно так же для всех остальных: восемь цветных глюонов формируют комплекс взаимодействующих друг с другом частиц.
Когда мы переходим от этих квантов к полям, которые они создают, взаимодействия дают удивительный эффект. Силовые линии глюонов притягивают друг друга! И поля вместо того, чтобы распространять свое влияние равномерно сквозь пространство, концентрируются в трубки (см. вклейку OO – и ср. с илл. 20).
Самоклейкость цветного «клея» – ключ к пониманию конфайнмента кварков. Трубки силовых линий глюона – это и есть возникающие вдруг «резинки», готовые создать эффект конфайнмента! Когда вы увеличиваете расстояние, разделяющее цветовой заряд и его противоположность, они оказываются соединены более длинной трубкой потока. Требуется конечное количество энергии на единицу дополнительного разделения, чтобы подпитывать новые поля. В результате возникает сила сопротивления, и эта сила отнюдь не становится меньше по мере того, как вы растягиваете их еще дальше. Потребовалось бы бесконечное количество энергии, чтобы освободить цветовой заряд полностью, но этого не может быть, и потому он находится в конфайнменте.
Самоклейкость глюона – это также хороший способ ввести и визуализировать понятие асимптотической свободы. Поскольку самоклейкость фокусирует цветовые поля вдали от кварка, они действуют с большей силой, чем действовали бы в противном случае, как армия, которая концентрирует свои силы. И наоборот, мы можем начать с более слабых сил, чем мы себе представили вначале, чтобы объяснить данную силу вдалеке. В этом вся суть асимптотической свободы: слабая на коротком расстоянии сила может породить значительную силу на большом расстоянии. Это именно тот вид поведения, который нам нужен, как вы, возможно, помните, чтобы объяснить снимки протонов Фридмана – Кендалла – Тейлора.
Мы можем также интерпретировать асимптотическую свободу с точки зрения того, как мы зондируем это взаимодействие. Зонды высоких энергий чувствительны к поведению силы на коротких расстояниях. «Почти свобода» на коротких расстояниях отражается на слабости взаимодействий и простоте поведения при высоких энергиях.
Неожиданно возникающая простота КХД при высоких энергиях – роскошный подарок Природы физикам, ищущим фундаментального понимания. На самом деле она приносит целую кучу подарков.
Подарки понимания
Ранняя Вселенная постижима. Очень рано в своей истории, вскоре после Большого взрыва, Вселенная была поистине местом высоких энергий. Благодаря асимптотической свободе мы можем с уверенностью смоделировать ее содержимое.
Мы можем получить информацию из столкновений на высоких энергиях. Поскольку доминирующая сила становится проще при высоких энергиях, мы можем точно вычислить ее следствия. Это позволяет нам без помех интерпретировать результаты ультрасильных столкновений между протонами и тщательно исследовать их в поиске новых эффектов. Например, Большой адронный коллайдер стал инструментом для открытия бозона Хиггса, как описано позже в этой главе. В ближайшем будущем мы узнаем, описывают ли действительность многообещающие, амбициозные теории объединения взаимодействий, как мы обсудим в следующей главе.
Разные силы начинают казаться не такими уж разными. Поразительное математическое сходство между уравнениями КХД и КЭД превращается в близкое физическое сходство между их следствиями, когда мы рассматриваем поведение при очень высоких энергиях (или на очень коротких расстояниях). Сильное взаимодействие, описываемое КХД, становится и проще, и слабее, пока кварки не начинают вести себя почти как электроны, а глюоны – почти как фотоны. Можно было бы сказать, что эффект стероидов смягчается. Учитывая столь явное математическое и физическое сходство, возможность существования объединенной теории выглядит серьезной. Основанная на симметрии математика КХД открывает дверь к объединению, а асимптотическая свобода проталкивает нас сквозь нее. Следуя за этой идеей до конца и вводя также слабое взаимодействие и гравитацию, мы обнаружим, что она объясняет несколько иначе загадочных «совпадений». Мы исследуем объединение всех взаимодействий как текущий рубеж нашего Вопроса в следующей главе.
Спасибо тебе, мать-природа, за эти подарки!
Рычаг и Дрожь Завесы
Очень трудно создать теории частиц и взаимодействий, которые были бы совместимы и с принципами квантовой механики, и с принципами специальной теории относительности. И это хорошо! Это означает, что, если мы верим в квантовую механику и в специальную теории относительности, мы получаем хороший рычаг для достижения нашей цели. Доступные теории весьма жесткие – их нельзя сильно изменить, не сделав их противоречивыми; это делает их сильными. И их не много; это позволяет держать их в сфере внимания.
С таким рычагом правильный факт может привести к огромным последствиям.
Илл. 34. «Дайте мне точку опоры, и я переверну мир» (Архимед)
Асимптотическая свобода оказывается именно таким фактом! Экспериментальное открытие того, что сильное взаимодействие между находящимися рядом кварками в конце концов не так уж сильно, было очень трудно согласовать с другими известными нам фактами. В большинстве теорий, которые не противоречат ни квантовой механике, ни специальной теории относительности, сходное отталкивает сходное, поэтому фокусировки сил не происходит. Противоположное поведение – когда взаимодействие становится сильнее на коротких расстояниях – намного более распространено. Поэтому, когда мы с Дэвидом Гроссом и независимо от нас Дэвид Политцер обнаружили, что это возможно, это был такой момент, который Каббала описывает как «Дрожь Завесы Храма», когда оболочка, которая сохраняет божественный мир сокрытым от нашего взора, сдвигается.
Мы с Гроссом продолжили, основываясь на нескольких других фактах – и главный из них заключался в том, что мы можем связать три кварка, чтобы сделать барион, где цветовые заряды взаимно нейтрализуются (правило отбеливания!), – поиск теории, которую мы теперь называем квантовой хромодинамикой (основанной на локальной симметрии и трехмерном пространстве свойств), которая стала бы единственно возможной теорией сильного взаимодействия. Даже теперь, когда я перечитываю наше заявление:
Наконец давайте вспомним, что предложенные теории оказываются единственным образом выбраны природой, если принять во внимание одновременно и буквально результаты SLAC[72] и подход ренормализационной группы к квантовой теории поля.
Я вновь переживаю смесь радостного возбуждения и беспокойства, которую почувствовал в то время. Сама КХД исторически стала первым подарком асимптотической свободы.
Новый вид физики
Уже в течение нескольких десятилетий считается правильным делить физику на две ветви: теория и эксперимент. Обе они в принципе стремятся к лучшему пониманию материального мира, но используют различные инструменты.
В последние годы, отмеченные взрывным ростом производительности компьютеров, появилась и процветает третья ветвь. Мы могли бы назвать ее «цифровым экспериментом», или «моделированием», или просто «решением сложных уравнений». Она сочетает элементы и теории, и эксперимента, но значительно отличается от обоих. Этот новый вид физики оказался особенно важен и успешен в КХД.
КХД предоставляет нам совершенно определенные уравнения, которым мы можем научить компьютеры. Как только мы это сделали, у нас появляется доступ к чрезвычайно быстрым, неустанным, честным и неуклонно точным помощникам, которые больше всего на свете любят вычислить. Давайте бегло посмотрим на два выдающихся результата, которые были достигнуты при помощи такого подхода. Они позволяют нам блестящим образом подвести итог нашему обсуждению сильного взаимодействия.
Во-первых, давайте возвратимся к вопросу, с которого мы начали: что представляют из себя атомные ядра? Сущность этого вопроса, как мы уже видели, заключается в его самом простом случае: что такое протон? Зная уравнения, которым он подчиняется, мы можем вычислить подробный портрет героя. Таким образом, мы обнаруживаем, что наше самое сокровенное вещество обладает красотой (вклейка PP) и утонченностью (вклейка QQ).
Наконец, в качестве подходящей кульминации нашего обсуждения КХД давайте задокументируем источник (большей части) массы. Скромно выглядящая илл. 35 резюмирует колоссальное научное достижение и является вехой для нашего Вопроса.
Илл. 35. Успешное вычисление масс адронов, основанное на КХД: источник (большей части) массы
На горизонтальной оси вы видите названия мезонов и барионов. Опять же, хотя об этих частицах можно много чего сказать и подробности будут захватывающими для специалистов, для текущих целей достаточно отметить, что существует множество адронов и у них есть различные названия (состоящие из различных греческих и латинских букв, иногда со звездочками или штрихами) и различные массы. Над каждым названием вы найдете горизонтальный отрезок, указывающий на экспериментально измеренное значение массы этой частицы. (Некоторые из частиц живут очень недолго, и это «размазывает» их массу по достаточно широкому диапазону. В таких случаях, например с частицей ρ, вы увидите серый прямоугольник, окружающий центральный отрезок.) Рядом с каждым отрезком есть затененные точки с вертикальными линиями, проходящими через них, – они обозначают расчетные значения массы частицы, полученные непосредственно из уравнений КХД различными исследовательскими группами. Вертикальные отрезки отражают диапазон неопределенности в вычислениях, внесенной ограничениями на машинное время и другими факторами. Я должен заметить, что эти вычисления чрезвычайно трудны. В них используются очень умные алгоритмы, и они проводятся на самых мощных вычислительных системах в мире в течение долгого времени.
Все результаты для «основных последовательностей» мезонов π, ρ, K, K*, η, η′, ω, φ и барионов N, Λ, Σ, Ξ, ∆, Σ*, Ξ*, Ω получаются в результате вычислений, если даны всего три входные величины: средние массы верхнего и нижнего кварков, масса странного кварка и единиц цветового заряда. Как можно видеть, согласие между измерениями и вычислениями поразительно.
Я хочу подчеркнуть, что из этих вычислений следует гораздо больше, чем закладывается в качестве входных данных. Уравнения КХД сильно ограничены симметрией, и в них мало возможностей для подстройки. Повторю, что для точного задания этих вычислений мы должны указать всего три входные величины: средняя масса верхнего и нижнего кварков, масса странного кварка и единица цветового заряда (общая мера силы взаимодействия). Поэтому, если что-то с чем-то не согласуется, там негде спрятаться! Мы непременно должны найти в результате наших вычислений все адроны, которые наблюдаются, с теми массами, которые они имеют согласно наблюдениям. И, самое важное, мы не должны найти ничего такого, что бы не наблюдалось, – в частности, мы не должны найти изолированных кварков или глюонов!
Из этого испытания ордалией[73] теория выходит триумфатором. Среди вычисленных масс есть масса частицы под названием N. Это не просто еще одна масса, потому что N обозначает нуклон, т. е протон или нейтрон. (Различие между массами протона и нейтрона слишком мало, чтобы его можно было заметить в таком масштабе.) Оказывается, эта масса очень мало зависит от масс кварков, которые в соответствующем случае достаточно малы.
Следовательно: почти вся масса нуклона, а значит, и почти вся масса обычного вещества во Вселенной возникают из чистой энергии, согласно формуле:
Масса нуклона проистекает из кинетической энергии кварков в состоянии конфайнмента и из энергии поля глюонов, которые обеспечивают конфайнмент. Мы получаем Массу без Массы, получаем ее непосредственно из чисто концептуальных, основанных на симметрии уравнений КХД.
Воплощает ли мир красивые идеи? Можете поспорить, что да. И вы тоже их воплощаете.