Красота физики. Постигая устройство природы — страница 67 из 72

• Нервные клетки (или небольшие сети нервных клеток), которые отвечают на колебание в разных частях базилярной мембраны, могут быть механически, электрически или химически соединены друг с другом таким образом, чтобы их отклики были синхронизированы по фазе. Это явление в физике и инженерном деле известно как фазовая синхронизация. Легкий вариант реализации этой концепции состоит в том, что может существовать класс нервных клеток, который получает колебательные сигналы от двух таких нервных клеток (или напрямую от колеблющихся волосковых клеток во внутреннем ухе) и отвечает таким способом, который не зависит от их относительной фазы.

• Могут быть банки (группы) нервных клеток, которые реагируют на колебания в любой точке базилярной мембраны с разными сдвигами по фазе. Когда две группы выходных сигналов, соответствующие двум разным местоположениям, совмещаются, среди них обязательно будет такие, которые синхронизированы. Последующий уровень нервных клеток, получающий входящий сигнал от этих банков, может сильнее реагировать на эти синхронизированные пары.

• Могут быть стандартные представители для каждой частоты – нервные клетки, выход которых фиксирован по отношению к общему временному механизму. Тогда относительная фаза между стандартными представителями всегда будет одной и той же, какой бы ни была относительная фаза входного сигнала.

Я не вношу в этот список простую, но радикальную возможность просто закодировать места, где базилярная мембрана сильно вибрирует, вообще не разбираясь во временной структуре пиков и впадин. (Это аналогично тому, что происходит с электромагнитными колебаниями в процессе зрительного восприятия.) При таком кодировании фазовая информация, конечно, теряется, но я думаю, что это уже слишком. Так мы не сумели бы объяснить открытие Пифагора, поскольку отношения частот более не соотносились бы с закономерностями закодированного сигнала.

Запоминание

Бенджамин Франклин страстно увлекался музыкой. Он великолепно играл на стеклянной гармонике – утонченном инструменте, для которого Моцарт написал очень красивую пьесу (адажио К-356, доступную бесплатно на нескольких сайтах в Интернете). В письме лорду Камесу (1765 г.) Франклин сделал несколько ценных замечаний о музыке, в том числе это, особенно глубокое:

На самом деле в обычном восприятии только согласованная последовательность звуков называется мелодией и только сосуществование согласующихся звуков – гармонией. Но поскольку память способна запоминать на некоторое время идеальный образ высоты прозвучавшего звука, чтобы затем сравнить ее с высотой последующего звука и судить истинно об их согласованности или несогласованности, из этого может возникать и возникает чувство гармонии между настоящим и прошлым звуками, доставляющее такое же удовольствие, как от двух звучащих в настоящий момент звуков.

Тот факт, что мы можем сравнивать частоты тонов, сыгранных в немного разное время, является сильным доводом в пользу существования сети нервных клеток, которые воспроизводят и ненадолго запоминают принятый рисунок колебаний. Эта вероятность, думаю, хорошо согласуется с нашей обычной идеей представления, поскольку такие сети могут воплощать стандартные представления. Здесь заслуживает внимания то, что восприятие относительной высоты звука соответствует простому сравнению стандартных представлений, а это иная задача, нежели узнавание абсолютной высоты звука.

Относительно этого круга идей заслуживает также внимания то, что мы способны более-менее поддерживать заданный темп в течение длительного периода времени. Это снова говорит в пользу существования настраиваемых колебательных сетей в нашей нервной системе, но на этот раз для значительно более низких частот.

Я не обладаю идеальным слухом, что меня огорчает. Я пытался обойти свою акустическую абстракцию относительной высоты звука, стимулируя некоторого рода искусственную синестезию. Я написал программу, чтобы случайным образом проигрывать определенные звуки вместе с определенными цветами. Позже я проверял себя то на одних данных, то на других, пытаясь предсказать парный сигнал. После многих утомительных подходов у меня получилось скромное улучшение по сравнению со случайным угадыванием. Возможно, существуют более эффективные способы, или же этого легче добиться молодым людям.

Чтобы определить, находятся ли высказанные здесь конкретные идеи о гармонии на верном пути, потребовалась бы напряженная экспериментальная работа. Но было бы здорово через два с половиной тысячелетия после Пифагора дойти до сути его великого открытия и тем самым воздать честь повелению дельфийского оракула: «Познай самого себя».

Платон I: Структура из симметрии – платоновы тела

Пять платоновых тел – это все конечные правильные многогранники, которые могут существовать.

Кажется вполне естественным задать вопрос, не можем ли мы выйти за пределы обнаруженного нами (или, скорее, Евклидом) ограничения, в соответствии с которым возможно лишь пять платоновых тел, рассматривая платоновы поверхности более общим способом. Вспомним, мы говорили, что в одной вершине не может сходиться более шести треугольников, потому что тогда сумма их углов составит больше 360°, а это больше того пространства, которое имеется в одной вершине. С шестью треугольниками мы получаем плоскость как платонову поверхность.

С тремя, четырьмя или пятью треугольниками мы, делая проекцию из центра нашей платоновой поверхности на описанную сферу, получаем правильные сечения сферы. Это возможно, потому что равносторонние сферические треугольники имеют углы больше 60°, поэтому мы можем окружить вершину менее чем шестью из них. Это другой способ представления обоих классов платоновых тел – как правильные сечения плоскостей или сфер.

Таким образом, мы пришли к тому, чтобы спросить более конкретно: можем мы представить себе другой вид поверхности, где углы будут меньше? Тогда мы, возможно, придумаем платоновы поверхности, где в одной вершине сходятся более шести треугольников.

Мы действительно можем это сделать! Что нам нужно, так это поверхность, которая получается в результате деформации плоскости таким образом, чтобы она изогнулась наружу, а не внутрь – так, как мы делаем, чтобы получить сферу. Седловидная форма дает необходимый эффект. На ней мы можем представить себе правильные сечения, основанные на вершинах с семью треугольниками или даже с большим их количеством (вообще говоря, произвольным). Если говорить более точно, математическая фигура, известная как трохоида, дает правильную седловидную форму, позволяющую сохранить все в симметрии, чтобы каждая вершина и каждый треугольник (или другая фигура) выглядели бы одинаково.

Древние геометры знали о геометрии более чем достаточно, чтобы выполнить все необходимые построения. Дальнейшее следование ходу этой мысли могло привести умных людей, живших на рубеже нашей эры, к понятиям неевклидовой геометрии XIX в. и к тем видам графического дизайна, которые сделал популярным М. Эшер в XX в. К сожалению, этого не случилось.

Можно увидеть стенд с пятью резными камнями…

Существуют разногласия по поводу того, являются ли ашмолинские и другие подобные камни действительно платоновыми телами. См. math.ucr.edu/home/baez/icosahedron.

Ньютон III: Динамическая красота

Великий математик и физик XX в. Герман Вейль.

Герман Вейль – один из моих героев. Я вырос на его книгах и даже сейчас часто к ним возвращаюсь. Поскольку он умер, когда я был маленьким ребенком, мне не довелось встретиться с ним лично. Но его прекрасные строки, которые приведены в тексте, открыли нам возможность сотрудничать, которую я продолжаю здесь. Вейль всегда сражал меня своей поэтичностью, и мне пришло в голову: почему бы не сделать следующий шаг и не написать стихотворение?

Вот это стихотворение. Первая его строка одновременно является заглавием.

Мир реален.

Наблюдаю картины я странные

В токах плоти, чьей сетью пронизан:

Мимолетные, беглые, рваные

Части мира, где жить я был призван.

Целый мир – он реален, я знаю.

То, что мы в нем, – ничуть не случайно.

Максвелл I: Эстетика Бога

Несколько великолепных бесплатных веб-сайтов, где вы можете интерактивно изучать уравнения Максвелла.

Веб-сайт maxwells-equations.com обеспечивает всестороннее начальное знакомство с уравнениями Максвелла, включая видеокурс. Статья в «Википедии» en.wikipedia.org/wiki/Maxwell%27s_equations очень хороша. При работе с этой статьей я рекомендую вам начать с раздела «Conceptual Descriptions» («Понятийное описание»), который в основном следует той же линии, что наша книга, и разрабатывается дальше. Также существует прекрасный и понятный маленький видеоролик о картине полей электромагнитной волны, идущей сквозь пространство. Я очень его рекомендую: en.wikipedia.org/wiki/Maxwell%27s_equations#/media/File: Electromagneticwave3D.gif.

Максвелл II: Двери восприятия

Кажется, эта способность встречается очень редко и не очень хорошо изучена.

Тем не менее вполне вероятно, что тетрахроматизм распространен среди матерей и дочерей мужчин, страдающих цветовой слепотой. Если такой мужчина является носителем гена поврежденного рецептора, так что его зеленые и красные рецепторы очень близки, хотя и не идентичны, и это передается вместе с Х-хромосомой, то его дочери также их получат. Вместе с набором нормальных рецепторов, унаследованных от матерей, эти дочери будут иметь четыре различных рецептора (хотя два из них будут похожи). Если это верно, то тетрахроматизм – не такое уж редкое явление, но его последствия могут быть трудно различимы. По сходным причинам можно ожидать, что матери мужчин, страдающих цветовой слепотой, могут быть тетрахроматами.