Красота физики. Постигая устройство природы — страница 68 из 72

Квантовая красота I: Музыка сфер

Антропные доводы поднимают множество вопросов.

Общая суть антропных доводов подробно обсуждается в «Терминах». Им посвящена отдельная статья, а кроме того, они затронуты существенным образом в статьях о темной материи и темной энергии. Я решил не прерывать основной текст отступлениями по этому поводу.

Квантовая красота III: Красота в основе Природы

Свойства, на которые реагируют глюоны, также были названыцветами.

В литературе встречается несколько разных вариантов для названий трех сильных цветовых зарядов. Как и любой другой, сделанный нами выбор (RGB) по существу произволен, но он удачно перекликается с нашим предыдущим обсуждением спектральных цветов и их смешивания, как вы сами увидите.

Я оставил описание пространств цветовых свойств несколько неопределенным, поскольку точное описание немного более сложно и использует комплексные числа. Пространство свойства сильного цвета – это пространство свойства с тремя комплексными измерениями, и аналогично устроены пространства свойств слабого цвета и электромагнитного «цвета». Во всех случаях преобразования симметрии не меняют полного расстояния до начала координат, поэтому пространства свойств того, что мы назвали сущностями (частицы, связанные друг с другом через преобразования симметрии), являются сферами различных размерностей. В случае сильного взаимодействия мы начинаем с трех комплексных измерений, которые соответствуют шести действительным, и потому пространство свойства кварковой сущности – это сфера с пятью действительными измерениями. Для электромагнитного заряда мы имеем одно комплексное измерение, два действительных и, наконец, – одномерную сферу, также известную как окружность. Радиус этой окружности равен величине электрического заряда.

Историческое происхождение термина «калибровочная симметрия» довольно интересно.

В 1919 г. Герман Вейль в своей статье «Новое расширение теории относительности» (Eine neue Erweiterung der Relativitätstheorie) предложил блестящую теорию для объяснения происхождения электромагнетизма. Хотя эта теория в своей исходной форме совершенно неверна, она привнесла идеи, которые оказались невероятно плодотворными. В самом деле, это была первая попытка превзойти Эйнштейна и призвать локальную симметрию в качестве фундаментального созидательного принципа для негравитационных взаимодействий. Как мы уже обсудили, эта стратегия, примененная разными способами, приводит к нашей Главной теории.

Термин «калибровочная симметрия» – это пережиток первоначальной теории Вейля.

Как мы уже обсуждали, основная идея локальной симметрии состоит в том, чтобы потребовать, чтобы множество разных образов мира представляли одно и то же физическое содержание. Если мы хотим, чтобы большое разнообразие «искаженных» компоновок пространства, времени и вещества было правомерно, т. е. если мы хотим, чтобы поведение, которое каждая из них описывает, было физически возможным, то мы должны ввести среду, которая дает возможность для искажений или, можно сказать, «создает» их. (См. вклейку EE и илл. 33, где дано визуальное представление этой идеи.) Вид среды, которая нам понадобится, тесно связан с видом искажений, которые мы решили использовать.

Вейль в своей первоначальной теории постулировал локальную масштабную симметрию. То есть он постулировал, что можно менять размер объектов независимо в каждой точке пространства-времени и все равно получать то же самое поведение этих объектов! Чтобы сделать эту смелую идею жизнеспособной, ему пришлось ввести «калибровочное» поле связности. Калибровочное поле связности говорит нам, как мы должны изменять наш масштаб длины, или переразмечать наши линейки, по мере того, как мы движемся от одной точки к другой. Вейль сделал выдающееся открытие, которое состояло в том, что это калибровочное поле связности для того, чтобы выполнять свою работу по обеспечению локальной масштабной симметрии, должно удовлетворять уравнениям Максвелла! Изумленный этим чудом, как ему казалось, Вейль предложил отождествить его идеальное математическое поле связности с реальным физическим электромагнитным полем.

К сожалению, хотя поле связности Вейля является необходимым компонентом локальной масштабной симметрии, оно недостаточно для того, чтобы обеспечить эту симметрию. Другие свойства материи, такие как размеры протона, дают нам объективные масштабы длин, которые не меняются по мере того, как мы движемся от точки к точке.

Эйнштейн и другие не оставили незамеченными недостатки теории Вейля. Несмотря на ее прозорливую гениальность, эта теория, казалось, обречена на забвение.

Однако все изменилось с началом развития квантовой теории. В этом контексте электрический заряд связан с одномерным пространством свойства, которое надстроено над пространством-временем, как мы обсуждали в основном тексте.

В 1929 г. Вейль воспользовался этой лазейкой, чтобы оживить свою «калибровочную» теорию в видоизмененной форме. В новой теории преобразования локальной симметрии стали не зависящими от пространства-времени изменениями в масштабе длины, а скорее вращениями в пространстве электрического свойства. После такого видоизменения мы получаем удовлетворительную теорию электромагнетизма!

Десятилетия спустя оказалось, что обеспечение локальной (зависящей от пространства-времени) симметрии относительно вращений в других пространствах свойств с бо́льшим количеством измерений, дает нам также удовлетворительные теории сильного и слабого взаимодействий. В честь опередившей время прозорливости Вейля физики называют все теории такого типа калибровочными теориями.

Они являются совокупностью протонов и нейтронов, связанных друг с другом.

Сами по себе нейтроны нестабильны, но, будучи связанными с другими нейтронами и протонами, нейтроны становятся стабильными внутри атомных ядер.

Ли и Янг предположили, что…

С исторической точки зрения их первоначальное предположение было не настолько конкретным, но более поздние работы уточнили его.

Возможно, это взаимодействие тоже можно было бы описать в виде воплощения локальной симметрии.

Для экспертов: как форма полного взаимодействия, в которой участвуют два тока, так и общая константа связи являются характеристиками связи калибровочных теорий.

Симметрия III: Эмми Нётер – Время, энергия и здравомыслие

Сам Нильс Бор, когда он столкнулся в 1920-е гг. …

Эти предположения Бора и Ландау были сделаны после теоремы Нётер. Оба они, Бор и Ландау, предвкушали радикальные изменения в основаниях физики, которые бы сделали теорему Нётер неприменимой. Но и квантовая теория в целом (которой не мог знать Бор), и Главные теории в частности (которых не мог знать Ландау) построены на тех же самых принципах, которыми пользовалась Нётер для доказательства своей теоремы, а именно – на принципах гамильтоновой механики. Как я упомянул в основном тексте, было бы очень желательно иметь более абстрактное, менее техническое основание.

Квантовая красота IV: Доверяем красоте

Блаженны те, кто веруют в то, что они видят.

Объединение взаимодействий и объединение взаимодействия с веществом – это две теоретические программы, которые уже далеко продвинулись. Как мы обсудили, они достигли значительной объяснительной силы и предполагают существенно новые эффекты. Эти следствия можно проверить с помощью конкретных, выполнимых экспериментов, и они проверяются сейчас. Есть еще два объединения в фундаментальной физике, которые, как мне кажется, были бы наиболее желательны, но в их случае существующие идеи пока не такие зрелые.

Одно из них – это объединение наших описаний вещества и информации. Первое основано, говоря грубо и в общих чертах, на уравнениях, которые описывают потоки энергии и заряда. Формально эти уравнения выводятся путем манипуляций с величиной, называемой действием. Действие имеет некоторые любопытные связи с энтропией, а энтропия имеет тесные связи с информацией, поэтому возможность объединенной теории очень заманчива. Такая теория могла бы предоставить более абстрактное понимание теоремы Нётер и укрепить ее основания.

Другое – это объединение динамики с начальными условиями, упомянутое несколько раз в нашей главной медитации.

То, что Фрэнсис Крик назвал «Удивительной гипотезой», находится на границе с физикой, но очень важно для любого обсуждения окончательного объединения, а именно: сознание, также называемое Разумом, является эмерджентным свойством Материи. Поскольку нейромолекулярная наука прогрессирует, не встречая на пути никаких препятствий, и компьютеры воспроизводят все больше и больше типов поведения, которые мы называем интеллектом у человека, эта гипотеза кажется неизбежной. Но что именно она означает, остается, мягко говоря, туманным.


Красивый ответ?

Уолт Уитмен.

В знаменитых строчках из «Листьев травы», которые мы вспоминали, Уолт Уитмен предвосхищал дополнительность. В духе этого заключительного раздела я бы хотел продолжить его стихи в том же направлении:

Мир широк,

Он вмещает в себе мириады сущностей.

Я смотрю всеобъемлющим взором

И говорю тебе, что я вижу.

По-твоему, я противоречу себе?

Ну что же, значит, я противоречу себе.

Если ты еще не ослеплен блеском:

Посмотри по-другому и восхитись.

Анализ функций путем изучения их вариаций на небольших масштабах, как в (дифференциальном) исчислении.

Математически самое простое периодическое движение – это такое движение, при котором частица движется с постоянной скоростью по кругу. Если мы проследим за высотой частицы, движущейся таким образом, мы получим самое простое периодическое движение, которое можно представить в виде линии. Оно называется синусоидальным (гармоническим) колебанием. По ссылке